In this paper we propose four-dimensional (4D) operators, which can be used to deal with sequential changes of topological relationships between 4D moving objects and we call them 4D development operators. In contrast to the existing operators, we can apply the operators to real applications on 4D moving objects. We also propose a new approach to define them. The approach is based on a dimension-separated method, which considers x-y coordinates and z coordinates separately. In order to show the applicability of our operators we show the algorithms for the proposed operators and development graph between 4D moving objects.
Moving objects have characteristics that they change continuously their positions over time. The movement of moving objects should be stored on trajectories for processing past queries. Moving objects databases need to provide spatio-temporal index for handling moving objects queries like combined queries. Combined queries consist of a range query selecting trajectories within a specific range and a trajectory query extracting to parts of the whole trajectory. Access methods showing good performance in range queries have a shortcoming that the cost of processing trajectory Queries is high. On the other hand, trajectory-based index schemes like the TB-tree are not suitable for range queries because of high overlaps between index nodes. This paper proposes new TR(Trajectory Riving)-tree which is revised for efficiently processing the combined queries. This index scheme has several features like the trajectory preservation, the increase of the capacity of leaf nodes, and the logical trajectory riving in order to reduce dead space and high overlap between bounding boxes of nodes. In our Performance study, the number of node access for combined queries in TR-tree is about 25% less than the STR-tree and the TB-tree.
Kim Jin-Deog;Choi Jin-Oh;Moon Sang-Ho;Lee Sang-Wook
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.8
/
pp.1843-1850
/
2004
If the location information of a great number of cars kept for business with telematics terminals is acquired and managed efficiently, this information forms the foundation for controlling cars and traffic flows. The studies on the pure spatial indices have focused on the efficient retrievals. However, the acquisition and management of the terminal location of moving objects are more important than the efficiency of the query processing in the moving object databases. Therefore, it will be need to adopt parallel processing system for the moving object databases which should maintain the object's current location as precise as possible. This paper proposes a location management system using CDMA communications of telematics terminals. More precisely, we propose a architecture of spatial indexing mobile objects using multiple processors, and also newly propose a method of splitting buckets using the properties of moving objects in order to minimize the number of database updates. We also propose a acquisition method for gathering the location information of moving objects and passing the information of the bucket extents in order to reduce the amount of passed messages between processors.
Recently, the TPR-tree has been proposed to support spatio-temporal queries for moving objects. Subsequently, various methods using the TPR-tree have been intensively studied. However, although the TPR-tree is one of the most popular access methods in spatio-temporal databases, any cost model for the TPR-tree has not yet been proposed. Existing cost models for the spatial index such as the R-tree do not accurately ostinato the number of disk accesses for spatio-temporal queries using the TPR-tree, because they do not consider the future locations of moving objects. In this paper, we propose a cost model of the TPR-tree for moving objects for the first time. Extensive experimental results show that our proposed method accurately estimates the number of disk accesses over various spatio-temporal queries.
The TPR-tree is the time-parameterized indexing scheme that supports the querying of the current and projected future positions of such moving objects by representing the locations of the objects with their coordinates and velocity vectors. If this index is, however, used in environments that directions and velocities of moving objects, such as vehicles, are very often changed, it increases the communication cost between the server and moving objects because moving objects report their position to the server frequently when the direction and the velocity exceed a threshold value. To preserve the communication cost regularly, there can be used a manner that moving objects report their position to the server periodically. However, the periodical position report also has a problem that lineal time functions of the TPR-tree do not guarantee the accuracy of the object's positions if moving objects change their direction and velocity between position reports. To solve this problem, we propose the query processing scheme and the data structure using road networks for predicting uncertainty positions of moving objects, which is reported to the server periodically. To reduce an uncertainty of the query region, the proposed scheme restricts moving directions of the object to directions of road network's segments. To remove an uncertainty of changing the velocity of objects, it puts a maximum speed of road network segments. Experimental results show that the proposed scheme improves the accuracy for predicting positions of moving objects than other schemes based on the TPR-tree.
Because there are so many spatio-temporal data in Moving Object Databases, a single disk system can not gain the fast response time and tota throughput. So it is needed to take a parallel processing system for the high effectiveness query process. In these existing parallel process-ing system. it does not consider characters of moving object data. Moving object data have to be thought about continuous report to the Moving Object Databases. So it is necessary think about the new Declustering System for the high performance system. In this paper, we propose the new Dechustering Policies of Moving objet data for high effectiveness query processing. At first, consider a spatial part of MBB(Minimum Bounding Box) then take a SD(SemiAllocation Disk) value. Second time, consider a SD value and time value which is node made at together as SDT-Proximity. And for more accuracy Declustering effect, consider a Load Balancing. Evaluation shows performance improvement of aver-age %15\%$ compare with Round-Robin method about $5\%\;and\;10\%$ query area. And performance improvement of average $6\%$ compare with Spatial Proximity method.
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.89-92
/
2000
실세계 객체의 정보는 공간상에서 위치 또는 영역을 가지고 있으며 시간에 따라 변한다. 또한 여러 분야의 응용 업무들 또한 시간과 공간 개념을 합께 포함하고 있으므로 시간 데이터와 공간 데이터에 대한 동시 지원의 필요성이 부각되었으며 시공간 데이터베이스(spatiotemporal databases)의 필요성이 제기 되었다. 그러나, 지금까지 제안된 시공간 객체 모델은 2 차원 공간 데이터로 제한되어 있었으나, 이 논문에서는 3 차원 공간에 시간 영역을 확장하여 시공간 데이터를 제공하기 위한 통합데이터 모델을 제시한다. 여기서 제안된 3 차원 시공간 객체 모델은 이력 객체(discretely moving object)의 표현에 중점을 두었고, 이동 객체(continuously moving object)에 대한 모델은 연속적인 위치의 변화를 표현하기 위한 객체의 모델링에 초점을 맞추고 있다.
Journal of Korea Spatial Information System Society
/
v.7
no.1
s.13
/
pp.13-24
/
2005
Objects, which change their positions over time such as cars, are called moving objects. Trajectories of a moving object have large volumes because trajectories are accumulated. Efficient indexing techniques for searching these large volumes of trajectories are needed in the moving object databases. Especially the TB-tree which supports bundling trajectories is suitable for processing combined queries which have 2 steps: first step is selecting trajectories (range search), next is selecting the parts of each trajectory (trajectory search). But the TB-tree has unnecessary disk accesses cause of lack of spatial discrimination in range queries. In this paper, we propose and implement the splitting polity which can reduce dead spaces of non-leaf node in order to process range queries efficiently. The policy has better performance about range queries than the TB-tree as well as the advantages of the TB-tree, such as highly space utilization and efficient trajectory extraction. This paper shows that the newly proposed split policy has better performance in processing the range queries than that of the TB-tree by experimental evaluation.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.6
/
pp.1266-1272
/
2004
Location-Based Services(LBS) give rise to location-dependent queries of which results depend on the positions of moving objects. Because positions of moving objects change continuously, indexes of moving object must perform update operations frequently for keeping the changed position information. Existing spatial index (Grid File, R-Tree, KDB-tree etc.) proposed as index structure to search static data effectively. There are not suitable for index technique of moving object database that position data is changed continuously. In this paper, I propose a dynamic hashing index that insertion/delete costs are low. The dynamic hashing structure is that apply dynamic hashing techniques to combine a hash and a tree to a spatial index. The results of my extensive experiments show the dynamic hashing index outperforms the $R^$$R^*$-tree and the fixed grid.
Most of previous works for skyline queries have focused only on static attributes of target objects. With the advance in mobile applications, however, the need of continuous skyline queries for moving objects has been increasing. Even though several techniques to process continuous skyline queries have been proposed recently, they cannot process subspace queries, which use only the subset of attribute dimensions. Therefore it is not feasible to utilize those methods for mobile applications which must consider moving objects and subspaces simultaneously. In this paper, we propose a dominant object-based pruning method to compute subspace skyline of moving objects efficiently at query time and present the experimental results to show the effectiveness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.