• 제목/요약/키워드: moving normal force

검색결과 28건 처리시간 0.018초

Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity

  • Kumar, Rajneesh;Sharma, Nidhi;Chopra, Supriya
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.459-483
    • /
    • 2022
  • In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has been constructed. The governing equationsfor orthotropic photothermoelastic plate are simplified for two-dimension model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source and carrier density periodic loading are taken to explore the application of the assumed model. Various field quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the transformed domain. The problem is validated by numerical computation for a given material and numerical obtained results are depicted in form of graphs to show the impact of varioustheories of thermoelasticity along with impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, plasma and elastic wave and otherfieldsin thematerialscience, physical engineering.

Friction and Wear Simulation of Suspended Silicon Asperity Moving over a Plate at Microscale

  • Cho, Sung-San;Kim, Jung-Soo;Park, Seung-Ho
    • International Journal of Safety
    • /
    • 제5권1호
    • /
    • pp.10-16
    • /
    • 2006
  • A suspended hemispherical silicon asperity moving over a silicon plate was simulated. The simulation results on friction and wear in the interface between the two can help obtain more durable miscroscale structures. Silicon structures were constructed with Tersoff three-body potential. Dependence of friction and wear of the asperity on both the atomic arrangement in the plate and the moving direction was investigated under the condition that the asperity is subject to the attractive normal force due to the plate. The results show that the variation of friction force with the movement of asperity, and the occurrence of adhesive wear are attributed to the formation and rupture of asperity, junction between the asperity and the plate. The friction force and wear are smaller when the asperity is incommensurate with the plate, and they also depend on the moving direction of the asperity over the plate.

충돌 벡터를 이용한 이동로봇의 동적 장애물 회피 (Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector)

  • 서대근;류은태;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

유한길이의 농형 2차측을 갖는 선형유도전동기의 2차측 이동 위치에 따른 특성 해석 (Characteristic Analysis of a Linear Induction Motor According to Various Positions of the Moving Cage-type Secondary)

  • 박승찬;김병택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.583-585
    • /
    • 2002
  • In this paper. the characteristics of a linear induction motor with the moving cage-type secondary are analyzed using finite element method. Thus thrust. normal force and the secondary bar currents distribution are obtained for different positions of the moving secondary.

  • PDF

저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율 (THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW)

  • 최종혁;맹주성;한철희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.159-163
    • /
    • 2009
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to calculate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion devices for the given Reynolds number flow.

  • PDF

저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율 (THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW)

  • 안상준;최종혁;맹주성;한철희
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.

질감 제시 장치를 이용한 촉감인지 특성 연구 (Study of Human Tactile Sensing Characteristics Using Tactile Display System)

  • 손승우;경기욱;양기훈;권동수
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.

실리콘 돌기의 응착마찰 분자동력학 시뮬레이션 (Molecular Dynamics Simulation of Adhesive Friction of Silicon Asperity)

  • 박승호;조성산
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.547-553
    • /
    • 2004
  • A hemispherical asperity moving over a flat plane is simulated based on classical molecular dynamics. The asperity and the plane consist of silicon atoms whose interactions are governed by the Tersoff three-body potential. The gap between the asperity and the plane is maintained to produce attractive normal force in order to investigate the adhesive friction and wear. The simulation focuses on the influence of crystallographic orientation of the contacting surfaces and the moving direction. It is demonstrated that the adhesive friction and wear are lower when crystallographic orientations of the contacting surfaces are different, and also depend on the moving direction relative to the crystal1ographic orientation.

Empirical numerical model of tornadic flow fields and load effects

  • Kim, Yong Chul;Tamura, Yukio
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.371-391
    • /
    • 2021
  • Tornadoes are the most devastating meteorological natural hazards. Many empirical and theoretical numerical models of tornado vortex have been proposed, because it is difficult to carry out direct measurements of tornado velocity components. However, most of existing numerical models fail to explain the physical structure of tornado vortices. The present paper proposes a new empirical numerical model for a tornado vortex, and its load effects on a low-rise and a tall building are calculated and compared with those for existing numerical models. The velocity components of the proposed model show clear variations with radius and height, showing good agreement with the results of field measurements, wind tunnel experiments and computational fluid dynamics. Normal stresses in the columns of a low-rise building obtained from the proposed model show intermediate values when compared with those obtained from existing numerical models. Local forces on a tall building show clear variation with height and the largest local forces show similar values to most existing numerical models. Local forces increase with increasing turbulence intensity and are found to depend mainly on reference velocity Uref and moving velocity Umov. However, they collapse to one curve for the same normalized velocity Uref / Umov. The effects of reference radius and reference height are found to be small. Resultant fluctuating force of generalized forces obtained from the modified Rankine model is considered to be larger than those obtained from the proposed model. Fluctuating force increases as the integral length scale increases for the modified Rankine model, while they remain almost constant regardless of the integral length scale for the proposed model.