• Title/Summary/Keyword: moving boundary condition

Search Result 118, Processing Time 0.031 seconds

Word-boundary and rate effects on upper and lower lip movements in the articulation of the bilabial stop /p/ in Korean

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • In this study, we examined how the upper and lower lips articulate to produce labial /p/. Using electromagnetic midsagittal articulography, we collected flesh-point tracking movement data from eight native speakers of Seoul Korean (five females and three males). Individual articulatory movements in /p/ were examined in terms of minimum vertical upper lip position, maximum vertical lower lip position, and corresponding vertical upper lip position aligned with maximum vertical lower lip position. Using linear mixed-effect models, we tested two factors (word boundary [across-word vs. within-word] and speech rate [comfortable vs. fast]) and their interaction, considering subjects as random effects. The results are summarized as follows. First, maximum lower lip position varied with different word boundaries and speech rates, but no interaction was detected. In particular, maximum lower lip position was lower (e.g., less constricted or more reduced) in fast rate condition and across-word boundary condition. Second, minimum lower lip position, as well as lower lip position, measured at the time of maximum lower lip position only varied with different word boundaries, showing that they were consistently lower in across-word condition. We provide further empirical evidence of lower lip movement sensitive to both different word boundaries (e.g., linguistic factor) and speech rates (e.g., paralinguistic factor); this supports the traditional idea that the lower lip is an actively moving articulator. The sensitivity of upper lip movement is also observed with different word boundaries; this counters the traditional idea that the upper lip is the target area, which presupposes immobility. Taken together, the lip aperture gesture is a good indicator that takes into account upper and lower lip vertical movements, compared to the traditional approach that distinguishes a movable articulator from target place. Respective of different speech rates, the results of the present study patterned with cross-linguistic lenition-related allophonic variation, which is known to be more sensitive to fast rate.

The Braking Torque Analysis of Eddy Current Brake with the Use of Coulomb′s law and the Method of Image (쿨롬 법칙과 영상법을 이용한 와전류 브레이크의 제동토크 해석)

  • Lee, Gap-Jin;Park, Gi-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.431-437
    • /
    • 2001
  • Since the eddy current problem usually depends on the geometry of the moving conductive sheet and the shape of the pole projection area, there is no general method to find out its analytical solution. The analysis of the eddy current in a rotating disk is performed in the case of time-invariant field to find its analytical solution. As a method to solve the eddy current problem, the concept of the Coulomb charge and image method are proposed with the consideration of the boundary condition. Firstly, the line charge is obtained from the volume charge generated in the rotating disk and Coulomb's law is applied. Secondly, the finite disk radius is considered by introducing an imaginary eddy current to satisfy the boundary condition that the radial component of the eddy current is zero at the edge of the relating disk. Thirdly, the braking torque is calculated by applying Lorentz force law. Finally, the computed braking torque is compared with the measured one As a result, it can be said that the proposed model presents fairly accurate results in a low angular velocity range although a large error is observed as the angular velocity of the disk increases.

  • PDF

Computation of Wave Resistance in the Water of Finite Depth Using a Panel Method (패널법을 이용한 유한수심에서의 조파저항 계산)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.66-74
    • /
    • 1992
  • A panel method in the spirit of Hess & Smith(1962), and also of Dawson(1977) was developed to compute the wave resistance of a submerged, or a surface piercing, body moving in the water of finite depth. As a boundary condition on the free surface what is called the Poisson equation is used, while Yasukawa(1989) chose the Dawson equation for which the double-body flow is regarded as the basic one. In order to satisfy the boundary condition on the bottom surface automatically, the sum of a Rankine source and its image with respect to the bottom surface is chosen as the Green function, and hence the singularity is distributed only on the body and on the free surface thereby decreasing the required number of panels dramatically, compared to that of Yasukawa, without the consequential loss of accuracy. Calculations were done for a submerged sphere and for the Wigley hull, and the results are compared with other existing analytical and numerical data.

  • PDF

Effects of Uniform and Turbulent Inflow Conditions on Wake Topology and Vortex Growth Behind a Ramp (균일 및 난류 입구조건이 램프 후류 형상 및 성장에 미치는 영향)

  • Lokesh Kalyan Gutti;Mustafa Z. Yousif;Hee-Chang Lim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2023
  • This work is to observe the wake flow generated behind a ramp. We have conducted a large eddy simulation with two ramp models having different heights with two different inflow conditions. Reynolds number based on the height of the large ramp (LR) and small ramp (SR) are Reh = 2.8×104 and 1.4×104 respectively. The wake flow visualization shows the formation of streamwise counter-rotating vortices pairs at the downstream of the obstacle. These primary vortices are stretched and lifted up when moving downstream. In order to observe the effect of the inflow condition on the wake transition, two different inlet flow conditions are given on the inlet section as an inlet boundary condition. Induced counter-rotating vortices pairs due to sharp-edged triangular ramp obstacles are developed and propagated downstream. In the result, the large ramp shows a more complicated wake structure of the boundary layer than the small ramp.

Unsteady Aerodynamic Characteristics depending on Reduced Frequency for a Pitching NACA0012 Airfoil at Rec=2.3×104

  • Kim, Dong-Ha;Chang, Jo-Won;Sohn, Myong Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • Most of small air vehicles with moving wing fly at low Reynolds number condition and the reduced frequency of the moving wing ranges from 0.0 to 1.0. The physical phenomena over the wing dramatically vary with the reduced frequency. This study examines experimentally the effect of the reduced frequency at low Reynolds number. The NACA0012 airfoil performs sinusoidal pitching motion with respect to the quarter chord with the four reduced frequencies of 0.1, 0.2, 0.4 and 0.76 at the Reynolds number $2.3{\times}10^4$. Smoke-wire flow visualization, unsteady surface pressure measurement, and unsteady force calculation are conducted. At the reduced frequency of 0.1 and 0.2, various boundary layer events such as reverse flow, discrete vortices, separation and reattachment change the amplitude and the rotation direction of the unsteady force hysteresis. However, the boundary layer events abruptly disappear at the reduced frequency of 0.4 and 0.76. Especially at the reduced frequency of 0.76, the local variation of the unsteady force with respect to the angle of attack completely vanishes. These results lead us to the conclusion that the unsteady aerodynamic characteristics of the reduced frequency of 0.2 and 0.4 are clearly distinguishable and the unsteady aerodynamic characteristics below the reduced frequency of 0.2 are governed by the boundary layer events.

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

A NUMERICAL STUDY FOR IMPROVING PERFORMANCE ON PAINT DRYING SYSTEM OF A VEHICLE (차량 도장 건조 성능 향상을 위한 수치해석 연구)

  • Lee, Seung-Jae;Lee, Sang-Hyuk;Hur, Nahm-Keon;Kim, Hee-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.99-102
    • /
    • 2010
  • In the present study, a three-dimensional numerical simulation was performed in a paint drying system of vehicle assembly line. In the drying system hot air and cool air are blown in turn from the nozzles to dry the trim of vehicle. Inlet boundary condition using user subroutine code is adopted to consider the moving motion of the vehicle. The present paper aims to improve the performance of the drying system. The transient distribution of temperature and velocity at the surface of the vehicle were predicted numerically. From these results, optimal operating condition of the drying system are to be suggested.

  • PDF

Extended MLS Difference Method for Potential Problem with Weak and Strong Discontinuities (복합 불연속면을 갖는 포텐셜 문제 해석을 위한 확장된 MLS 차분법)

  • Yoon, Young-Cheol;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.577-588
    • /
    • 2011
  • This paper provides a novel extended Moving Least Squares(MLS) difference method for the potential problem with weak and strong discontinuities. The conventional MLS difference method is enhanced with jump functions such as step function, wedge function and scissors function to model discontinuities in the solution and the derivative fields. When discretizing the governing equations, additional unknowns are not yielded because the jump functions are decided from the known interface condition. The Poisson type PDE's are discretized by the difference equations constructed on nodes. The system of equations built up by assembling the difference equations are directly solved, which is very efficient. Numerical examples show the excellence of the proposed numerical method. The method is expected to be applied to various discontinuity related problems such as crack problem, moving boundary problem and interaction problems.

Numerical Study on the Radiation of Intake Noise from Internal Combustion Engine by Using Essentially Non-Oscillatory Schemes (ENO기법을 이용한 연소 엔진 흡기계 소음의 방사에 관한 수치적 연구)

  • 김용석;이덕주
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.239-250
    • /
    • 1998
  • Traditionally, intake noise from internal combustion engine has not recevied much attention compared to exhaust noise. But nowadays, intake noise is a major contributing factor to automotive passenger compartment noise levels. The main objective of this paper is to identify the mechanism of generation, propagation and radiation of the intake noise. With a simplest geometric model, one of the main noise sources for the intake stroke is found to be the pressure surge, which is generated after intake valve closing. The pressure surge, which has the nonlinear acoustic behavior, propagates and radiates with relatively large amplitude. In this paper, unsteady compressible Navier-Stokes equations are employed for the intake stroke of axisymmetric model having a single moving cylinder and a single moving intake valve. To simulate the periodic motion of the piston and the valve, unsteady deforming mesh algorithm is employed and Thompson's non-reflecting boundary condition is applied to the radiation field. In order to resolve the small amplitude waves at the radiation field, essentially non-oscillatory(ENO) schemes with an artificial compression method (ACM) are used.

  • PDF