• Title/Summary/Keyword: movement control

Search Result 2,676, Processing Time 0.027 seconds

Interjoint and Intersegmental Coordination Pattern of Dwichagi in Taekwondo (태권도 뒤차기의 인체 관절과 분절사이의 협응 형태)

  • Lee, Ok-Jin;Choi, Ji-Young;Kim, Seung-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.73-82
    • /
    • 2007
  • The purpose of this study was to qualitatively analyze coordination pattern of joints and segments during Dwichagi in Taekwondo and present a point of difference as compared with the previous study on Dolryeochagi in Taekwondo. By the utilization of three-dimensional cinematography, the angles of individual joints and segments of six male Taekwondo experts during Dwichagi were calculated by using Euler's angle. The used coordination variables were angle vs. angle plots between adjacent joints and segments and angle vs. angular velocity plots of individual joints and segments, respectively. It was observed during Dwichagi that in-phase coordination and spring-like rotational control mechanism of the lower and upper trunk were transferred into straight spring-like control mechanism of lower leg passing through flexion-extension and the fixation of degree-of-freedom of lower trunk and hip joint alternatively. This comparative study that coordination variables were used seems to be more useful research direction to deeply understand basic control mechanisms of Taekwondo kicking techniques when compared with the previous studies that defined Dwichagi as a thrust movement pattern merely based on biomechanical variables of a kicking leg.

Changes in The Pressure-Flow Control Characteristics of Shunt Valves by Intracranial Pressure Pulsation (뇌압 펄스에 의한 션트밸브의 압력-유량제어 특성의 변화)

  • 홍이송;이종선;장종윤
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.391-395
    • /
    • 2002
  • Shunt valves used to treat patient with hydrocephalus were numerically simulated to investigate influence of pressure pulsation on their flow control characteristics. We modeled flow orifice through the shunt valve and imposed pulsating pressure and valve diaphragm movement to compute flow through the valve. The results of our study indicated that flow rates increased more than 40% by introducing pressure pulsation and diaphragm movement on the shunt valve. Our results demonstrate the pressure-flow control characteristics of shunt valves implanted above human brain may be quite different from those obtained by syringe pump test just after manufacture that induces uniform pressure.

Lumpy skin disease outbreak and quarantine in the Incheon area

  • Dokyung Ra;Hyung-Seok Kim;Cheol Jeong;Dae sung Yoo;Ho-Seong Cho;Yeonsu Oh
    • Korean Journal of Veterinary Service
    • /
    • v.47 no.3
    • /
    • pp.179-183
    • /
    • 2024
  • In 2023, an outbreak of Lumpy Skin Disease in Ganghwa-gun, Incheon, South Korea, resulted in nine confirmed cases, comprising 8.4% of the national total, a disproportionately high percentage. Epidemiological investigations indicated a significant role of biting insects in viral transmission, particularly in the northern region. However, human-mediated transmission between farms under the same management was also identified. Clinical presentations in infected cattle varied, ranging from anorexia and skin nodules to severe systemic illness. Control measures included culling and burial of infected animals, a standstill order on susceptible livestock movement, and a mass vaccination campaign encompassing all 21,983 cattle in Incheon. Movement restrictions were gradually lifted following negative test results in designated surveillance, protection, and control zones. Environmental testing conducted 30 days after restriction removal allowed for restocking of previously affected farms. This outbreak highlights the vulnerability of the South Korean cattle industry to LSD and emphasizes the critical need for robust preventative measures, including enhanced vector control strategies and widespread vaccination.

The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings (초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구)

  • Park, Younggi;Hong, Kibea;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Recently, there have been a lot of casualties due to fires in high-rise buildings. The toxic gases and smokes generated by fires in high-rise buildings spread rapidly through the elevator shaft and stairwell, due to the stack effect, and can cause critical casualties. To reduce the number of casualties, smoke control systems have been introduced. Smoke control systems play an essential role in preventing the spread of smoke in high-rise buildings and securing the evacuation route. Also, in high-rise buildings, evacuation by an elevator is considered to be indispensable. However, the pressure field in the shaft is strongly disturbed when the elevator is moving and this can affect the performance of the smoke control system. Therefore, in this study, we experimentally and numerically analyzed the effect of elevator movement on the pressure difference between the vestibule and living room by building a model using the sandwich pressurization method based on the performance based design. To consider the leakage areas in high-rise buildings, e.g. the windows, fire door and elevator, the National Fire Safety Codes and area ratio were used. The elevator speed in the model building was varied between 20 m/s and 100 m/s corresponding to a real elevator speed of 7 m/s~17 m/s. As a result, the relationship between the pressure difference and elevator speed was found to be ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735. This result can be used to take into consideration the effect of elevator movement when designing smoke control systems.

THE EFFECT OF EXOGENOUS ELECTRIC CURRENTS ON CYCLIC NUCLEOTIDES IN FELINE ALVEOLAR BONE (외인성전류가 고양이 치조골의 cyclic nucleotides에 미치는 영향에 관한 연구)

  • Kim, Young-Bok;Lee, Jong-Heun;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.14 no.2
    • /
    • pp.187-202
    • /
    • 1984
  • There are evidences that exogenous electric currents are capable of enhancing bone formation and resolution, and that the conversion of the bioelectric response to biochemical activity provides the directional component of orthodontic tooth movement. In addition, evidence has implicated cyclic nucleotides in alveolar bone cellular activation mechanism during orthodontic tooth movement. In view of these evidences, this study was performed to investigate the effects of exogenous electric currents on cyclic nuclotide levels in feline alveolar bone and the possible clinical application of electric currents as an additional orthodontic tool. In the first study, three groups of three adult cats were subjected to application of a constant direct current of $10{\pm}2$ microamperes to gingival tissue near maxillary canine noninvasively for 1, 3, and 7 days respectively. In the second study, three groups of three adult cats each were treated by an electric-orthodontic procedure for 1, 3, and 7 days respectively. The left maxillary (control) canine received an orthodontic force of 80gm alone at time of initiation, while the right maxillary (experimental) canine received combined force-electric stimulation (80gm of force and $10{\pm}2$ microamperes of a constant D.C. currents). Alveola, bone samples were obtain from the mesial (tension and/or cathode) and the distal (compression and/or anode) sites surrounding maxillary canines as well as from contralateral control sites. The samples were extracted, boiled, homogenized, and the supernatants were assayed for cyclic nucleotides (cAMP, cGMP) by a radioimmunoassay method. And also the amount of tooth movement was measured in the second study. On the basis of this study, the following conclusions can be drawn: 1. The fluctuation pattern of cyclic nucleotide levels in alveolar bone treated by exogenous electric currents was similar to that treated by orthodontic force. 2. The cAMP levels in alveolar bone of electrically treated teeth significantly elevated above the control values. And of electrically treated teeth, the values of the anode sites were higher than those of the cathode sites. 9. The cGMP levels in alveolar bone of electrically treated teeth elevated above the control values at the initiation phase of treatment, but dropped below the control values at time of termination. And of electrically treated teeth, the values of the cathode sites were higher than those of the anode sites. 4. The rate of tooth movement in teeth . treated by force-electric combination increased with the length of treatment as compared to that treated by mechanical force alone.

  • PDF

Formation Motion Control for Swarm Robots (군집 로봇의 포메이션 이동 제어)

  • La, Byoung-Ho;Kim, Sung-Ho;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2147-2151
    • /
    • 2011
  • In this paper, we propose the formation control algorithm for swarm robots. The proposed algorithm uses the artificial potential field(APF) to plan the global path of swarm robots and to control the formation movement. The navigation function generates a global APF for a leader robot to reach a given destination and an avoidance function generates a local APF for follow robots to avoid obstacles. Finally, some simulations show the validity of the proposed method.

Case Study for the Stability of Temporary Shoring Facilities at Inchon International Airport (가시설 안정성 검토에 관한 인천국제공항 시공 사례 연구)

  • 최인걸;조현모;류승철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.97-104
    • /
    • 1999
  • This case study has been prepared to provide the practical data about construction of temporary shoring facilities (i.e. braced sheet pile excavation) and to utilize the case study information effectively for design and construction of future facilities. This case study includes information such as 1) installing measurement devices to monitor the deformation of the sheet pile walls and the subsoil in the vicinity after establishing the criteria for the sheet pile deflection; 2) monitoring the actual movement of the temporary facility after setting up the survey control standard (due to the movement of the temporary facility) : 3) inspecting the suitability of the temporary facility construction: and 4) analyzing and studying the result of the tension test after installing ground anchors.

  • PDF

Robust Tracking Algorithm for Moving Object using Kalman Filter and Variable Search Window Technique (칼만 필터와 가변적 탐색 윈도우 기법을 적용한 강인한 이동 물체 추적 알고리즘)

  • Kim, Young-Kyun;Hyeon, Byeong-Yong;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.673-679
    • /
    • 2012
  • This paper introduces robust tracking algorithm for fast and erratic moving object. CAMSHIFT algorithm has less computation and efficient performance for object tracking. However, the method fails to track a object if it moves out of search window by fast velocity and/or large movement. The size of the search window in CAMSHIFT algorithm should be selected manually also. To solve these problems, we propose an efficient prediction technique for fast movement of object using Kalman Filter with automatic initial setting and variable configuration technique for search window. The proposed method is compared to the traditional CAMSHIFT algorithm for searching and tracking performance of objects on test image frames.

Estimating Human Walking Pace and Direction Using Vibration Signals (진동감지를 이용한 사용자 걸음걸이 인식)

  • Jeong, Eunseok;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.481-485
    • /
    • 2014
  • In service robots, a number of human movements are analyzed using a variety of sensors. Vibration signals from walking movements of a human provide useful information about the distance and the movement direction of the human. In this paper, we measure the intensity of vibrations and detect both human walking pace and direction. In our experiments, vibration signals detected by microphone sensors provide good estimation of the distance and direction of a human movement. This can be applied to HRI (Human-Robot Interaction) technology.

The Age Related Changes of Thickness and Symmetry of Deep Trunk Muscles (노화에 따른 심부 복부근육의 두께 변화와 대칭성 변화)

  • Seo, Dong-Kwon;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.379-385
    • /
    • 2013
  • PURPOSE: This study is research about deep trunk muscles (DTM) that is important and serve to control the movement of the trunk to provide stability during movement for human. In this study, trying to prove a change of DTM of aging in the ultrasound image. METHODS: We measured via an ultrasound image during rest and contraction of DTM in 42 young and 48 old people, and then we measured the change of thickness and symmetry. RESULTS: Symmetry showed a significant difference only external oblique (EO) in the young(p<.05). In the elderly, it was found that ratio of contraction was greater transverse abdominis than EO. CONCLUSION: I considered it could lead to improvement of activity of daily life by applying intervention for recovery of motor control of TrA for the elderly in clinical practice.