• 제목/요약/키워드: movement control

검색결과 2,666건 처리시간 0.026초

미끄럼 바닥에서 안정성 유지를 위한 균형 전략과 평가방법 (Measurement and Strategies for Dynamic Stability During Locomotion on a Slippery Surface)

  • 김택훈;윤두식
    • 한국전문물리치료학회지
    • /
    • 제10권1호
    • /
    • pp.97-108
    • /
    • 2003
  • Slipping during various kinds of movement often leads to potentially dangerous incidents of falling. The purpose of this paper was to review some of the research performed in the field including such topics as rating scales for balance, kinematics and kinetics of slipping, adaptation to slippery conditions, postural and balance control, and protective movement during falling. Controlling slipping and fall injuries requires a multifaceted approach. Environmental conditions (state of floor surface, tidiness, lighting, etc), work task (walking, carrying, pushing, lifting, etc), and human behavior (anticipation of hazards, adaptation to risks, risk taking, etc) must be accounted for in the assessment of slip and fall-related risks. Future directions of research must deal with modeling of basic tribophysical, biomechanical, and postural control process involved in slipping and falling.

  • PDF

서스펜션 내구시험용 Road Simulator의 설계 및 제작 (Design and Manufacture of Road Simulator for Suspension Durability Test)

  • 최경락;황성호;전승배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2001
  • The road simulator system can simulate the longitudinal, lateral, and vertical movement changed by road conditions and vehicle dynamic characteristics while driving. This system provides the durability evaluation of vehicle suspensions. The system consists of hydraulic actuators, link mechanism, and servo controller. The hydraulic actuators are specially manufactured using low friction seals to endure high speed movement. The link mechanism is designed in order to minimize the dynamic effect during motion and remove the interference between 3axes actuators. The servo controller is composed of sensors, sensor amplifiers - displacement transducers and load cells, and an industrial PC with DSP board which calculates the control algorithm to control hydraulic actuators. The test results are included to evaluate the performance of this simulator comparing vehicle driving test.

  • PDF

Human-oriented programming technology for articulated robots using a force/torque sensor

  • Kang, Hyo-Sig;Park, Jong-Oh;Baek, Yoon-Su
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.96-99
    • /
    • 1992
  • Currently, there are various robot programming methods for articulated robots. Although each method has merits and drawbacks, they have commonly weak points for practical application, and especially the weak point can be even more vulnerable when the robot programming requires the subtle feelings of human being. This is because the movement of a human being is synthetic while the robot programming is analytic. Therefore, the present method of programming has limits in performing these kinds of subtle robot movement. In this paper, we propose a direct robot programming method, which generates robot programs based on the force/torque vector applied to a force/torque sensor by the human operator. The method reduces the effort required in the robot programming.

  • PDF

Crowd escape event detection based on Direction-Collectiveness Model

  • Wang, Mengdi;Chang, Faliang;Zhang, Youmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4355-4374
    • /
    • 2018
  • Crowd escape event detection has become one of the hottest problems in intelligent surveillance filed. When the 'escape event' occurs, pedestrians will escape in a disordered way with different velocities and directions. Based on these characteristics, this paper proposes a Direction-Collectiveness Model to detect escape event in crowd scenes. First, we extract a set of trajectories from video sequences by using generalized Kanade-Lucas-Tomasi key point tracker (gKLT). Second, a Direction-Collectiveness Model is built based on the randomness of velocity and orientation calculated from the trajectories to express the movement of the crowd. This model can describe the movement of the crowd adequately. To obtain a generalized crowd escape event detector, we adopt an adaptive threshold according to the Direction-Collectiveness index. Experiments conducted on two widely used datasets demonstrate that the proposed model can detect the escape events more effectively from dense crowd.

Analytic Modeling of the Xenon Oscillation Due to Control Rod Movement

  • Song, Jae-Seung;Cho, Nam-Zin;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.80-87
    • /
    • 1999
  • An analytic axial xenon oscillation model was developed for pressurized water reactor analysis. The model employs an equation system for axial difference parameters that was derived from the two-group one-dimensional diffusion equation with control rod modeling and coupled with xenon and iodine balance equations. The spatial distributions of nu, xenon, and iodine were expanded by the Fourier sine series, resulting in cancellation of the flux-xenon coupled non-linearity. An inhomogeneous differential equation system for the axial difference parameters, which gives the relationship between power, iodine and xenon axial differences in the case of control rod movement, was derived and solved analytically. The analytic solution of the axial difference parameters can directly provide with the variation of axial power difference during xenon oscillation. The accuracy of the model is verified by benchmark calculations with one-dimensional reference core calculations.

  • PDF

인간 팔의 형태학적.신경학적 분석 기법에 기반한 휴머노이드 로봇 팔 설계 (The Design of Humanoid Robot Arm based on the Morphological and Neurological Analysis of Human Arm)

  • 최형윤;배영철;문용선
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.555-559
    • /
    • 2007
  • There are few representative humanoid robots including Japanese ASIMO from Honda and HUBO from KAIST. We cannot consider ASIMO and HUBO the perfect humanoid robots, however. The basic principles when developing humanoid robot is to make them to work in a similar way as human's movement of arm. In this paper, we proposed method of designing humanoid robotic arms based on the morphological.eurological analysis of human's arm tor robot's arm to work in a similar way as human's ann, and we also implemented arm movement control system to humanoids robot by using SERCOS communication.

하악운동 회전량과 과로의 형태에 관한 연구 (A Study on the Amount of Mandibular Rotation and Pattern of Condylar Path)

  • Kyung-Soo Han;You-Me Lee
    • Journal of Oral Medicine and Pain
    • /
    • 제21권2호
    • /
    • pp.369-382
    • /
    • 1996
  • The author performed this study to investige the relationship between condylar movements recorded with Pantronicⓡ and mandibular rotational torque movements with BioEGNⓡ. For this study 56 patients with Temporomandibular disorders(TMD) and 30 dental students without any masticatory signs and symptoms were selected as patients group and control group, respectively. The items recorded with Pantronicⓡ(Denar Corp., USA) were immediate side-shift, progressive side-shift, angle of orbiting path, protrusive path and PRI. BioEGNⓡ(Bioelectric gnathography, Bioresearch Inc., USA) were used to measure the amounts of mandibular rotational torque movements in frontal and horizontal plane, and the distance of mandibular translation at incisal area. Amount of mandibular rotational torque movement depicted between the condyles was automatically analysed by angle and difference in frontal and horizontal plane. The obtained data were processed with SAS program and the conclusion of this study were as follows : 1. Mean values of items between patients group and control group in Pantronic measurements were not significantly different except in left protrusive path and in Pantronic Reproducibility Index(PRI). There were no significant difference of condylar paths by preferred chewing side and affected side between the two groups. 2. The amount of mandibular rotational torque movements were differed in frontal angle and difference on protrusion, and in frontal and in horizontal difference on left excursion between the two groups. But the amounts of translatory movements were actually same on all eccentric movements. 3. The amount of mandibular rotational torque movements with splint mere almost not changed from those without splint, with the exception of in horizontal measurements on protrusion. 4. The correlations of items between in Pantronic measurements and in BioEGN measurements wert not consistently, significant, however, generally the ISS related significantly with horizontal torque movement positively, and with frontal torque movement negatively on the contrary, the PSS showed positive correlation with frontal torque movement, and negative correlation with horizontal torque movement.

  • PDF

소프트 컴퓨팅에 의한 지능형 주행 판단 시스템 (A Judgment System for Intelligent Movement Using Soft Computing)

  • 최우경;서재용;김성현;유성욱;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.544-549
    • /
    • 2006
  • 본 논문은 인간의 보조 역할을 하기 위해 자율적인 명령을 내리고 사용자가 직접 제어할 수 있는 지능형 주행 판단 시스템(Judgment System for Intelligent Movement; JSIM)에 대한 연구이다. 본 논문에서는 제어 대상은 이동 로봇으로 한정한다. 이동 로봇은 지능형 주행 판단 모듈을 휴대한 사용자에게 영상정보와 초음파 센서 정보를 제공하고 가이드 역할을 수행한다. 그리고 PDA와 센서박스로 구성된 지능형 주행 판단 시스템은 이동로봇으로부터 얻은 정보와 사용자 명령을 입력으로 사용하는 소프트 컴퓨팅 기법을 이용하여 이동로봇의 속도와 방향을 결정하고 다양한 기능을 수행하도록 로봇을 원격으로 제어한다. 본 논문에서는 몸에 착용하고 주변장치들과 통신을 하며 지능적 판단을 할 수 있는 지능형 주행 판단시스템을 구성하고 실제 환경에서 지능적 판단 알고리즘 적용과 이동로봇을 제어하는 시스템을 구현하여 제안한 시스템의 실현 가능성을 검증한다. 지능 알고리즘은 계층적 퍼지 구조와 신경망을 융합한 구조이다.

The potential of non-movement behavior observation method for detection of sick broiler chickens

  • Hyunsoo Kim;Woo-Do Lee;Hyung-Kwan Jang;Min Kang;Hwan-Ku Kang
    • Journal of Animal Science and Technology
    • /
    • 제65권2호
    • /
    • pp.441-458
    • /
    • 2023
  • The poultry industry, which produces excellent sources of protein, suffers enormous economic damage from diseases. To solve this problem, research is being conducted on the early detection of infection according to the behavioral characteristics of poultry. The purpose of this study was to evaluate the potential of a non-movement behavior observation method to detect sick chickens. Forty 1-day-old Ross 308 males were used in the experiments, and an isolator equipped with an Internet Protocol (IP) camera was fabricated for observation. The chickens were inoculated with Salmonella enterica serovar Gallinarum A18-GCVP-014, the causative agent of fowl typhoid (FT), at 14 days of age, which is a vulnerable period for FT infection. The chickens were continuously observed with an IP camera for 2 weeks after inoculation, chickens that did not move for more than 30 minutes were detected and marked according to the algorithm. FT infection was confirmed based on clinical symptoms, analysis of cardiac, spleen and liver lesion scores, pathogen re-isolation, and serological analysis. As a result, clinical symptoms were first observed four days after inoculation, and dead chickens were observed on day six. Eleven days after inoculation, the number of clinical symptoms gradually decreased, indicating a state of recovery. For lesion scores, dead chickens scored 3.57 and live chickens scored 2.38. Pathogens were re-isolated in 37 out of 40 chickens, and hemagglutination test was positive in seven out of 26 chickens. The IP camera applied with the algorithm detected about 83% of the chickens that died in advance through non-movement behavior observation. Therefore, observation of non-movement behavior is one of the ways to detect infected chickens in advance, and it appears to have potential for the development of remote broiler management system.

기능좌표계를 이용한 교시 및 실행 전문가 시스템(TOES/WCS)에 있어서의 로보트의 동작제어 개선에 관한 연구 (A study on improvement of robot motion control in teaching and operating expert system/world coordinate system (TOES/WCS))

  • 이순요;한장희
    • 대한인간공학회지
    • /
    • 제8권1호
    • /
    • pp.41-46
    • /
    • 1989
  • The purpose of this study is to improve robot motion control in teaching and operating the expert system/world coordinate system (TOES/WCS) constructed in the previous study. The major contribution of this study is reduction of the inaccuracy in coordinated reading and the movement time of robots in macro motion control. This study also reduces undesirable time of micro motion control by using an unit control (UC) and a micro unit control (MUC) in micro motion control.

  • PDF