• 제목/요약/키워드: mouse mammary tumor virus

검색결과 6건 처리시간 0.018초

Lack of Detection of the Mouse Mammary Tumor-like Virus (MMTV) Env Gene in Iranian Women Breast Cancer using Real Time PCR

  • Tabriz, Hedieh Moradi;Zendehdel, Kazem;Shahsiah, Reza;Fereidooni, Forouzandeh;Mehdipour, Baharak;Hosseini, Zahra Mostakhdemin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2945-2948
    • /
    • 2013
  • Background: Mouse mammary tumor virus (MMTV) is the major cause of mammary tumors in mice. There is limited controversial evidence about the probable etiologic role of MMTV- like virus in human breast cancer. Materials and Methods: A total of 40 Formalin fixed paraffin embedded samples with diagnosis of breast cancer were collected in a period of 3 years from cancer institute of Iran. We selected both pre-menopausal and post-menopausal patients with different histologic grades and different ethnic groups. We evaluated presence of MMTV-like virus env gene through real time PCR method. Results: Forty patients (20 pre and 20 postmenopausal women) were evaluated with the mean age of 49.67. The average tumor size was 39 mm. None of the studied samples were positive for MMTV-like virus env gene target sequences. Conclusions: We found no evidence on the potential role of MMTV-like virus in the carcinogenicity of breast cancer among Iranian women.

Evaluation Frequency of Merkel Cell Polyoma, Epstein-Barr and Mouse Mammary Tumor Viruses in Patients with Breast Cancer in Kerman, Southeast of Iran

  • Reza, Malekpour Afshar;Reza, Mollaie Hamid;Mahdiyeh, Lashkarizadeh;Mehdi, Fazlalipour;Hamid, Zeinali Nejad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7351-7357
    • /
    • 2015
  • Breast cancer is the most common cancer among women worldwide. Roles of the Epstein-Barr, Merkel cell polyoma and mouse mammary tumor viruses in breast carcinogenesis are still controversial although any relationship would clearly be important for breast cancer etiology, early detection and prevention. In the present study associations between EBV, MMTV and Merkel cell polyoma virus and breast cancer in 100 Iranian patients were evaluated using paraffin-embedded tissues. EBER RNA and expression of p53 and large T antigen were evaluated by real time PCR and CD34, p63, HER2, PR and ER markers were studied by immunohistochemistry. EBV was detected in 8/100 (8%), MMTV in 12/100 (12%), MPy in 3/100 (3%) and EBER RNA in 18/100 (18%) cases. None of the control samples demonstrated any of the viruses. p53 was suppressed in EBV, MPy and MMTV positive samples. The large T antigen rate was raised in MPy positive samples. Our results showed that EBV, MMTV and the Merkel cell polyoma virus are foundwith some proportion of breast cancers in our patients, suggesting that these viruses might have a significant role in breast cancer in Kerman, southeast of Iran.

The Research Progress of the Interactions between miRNA and Wnt/beta-catenin Signaling Pathway in Breast Cancer of Human and Mice

  • Ye, Ni;Wang, Bin;Quan, Zi-Fang;Pan, Hai-Bo;Zhang, Man-Li;Yan, Qi-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1075-1079
    • /
    • 2014
  • MicroRNA expression is a research focus in studies of tumors. This article concentrates attention on potential links between tumors caused by mouse mammary tumor virus (MMTV) and human breast cancer, in order to provide theoretical basis for using mouse model to search for miRNA effects mediated by Wnt/beta-catenin signaling in human breast cancer. By analyzing interactions between miRNAs and the Wnt/beta-catenin signaling pathway in breast cancer, we hope to casts light on more biological functions of miRNAs in the process of tumor formation and growth and to explore their potential value in cancer diagnosis, prognosis and treatment. Our endeavor aimed at providing theoretical basis for finding safer, more effective methods for treatment of human breast cancer at the miRNA molecular level.

Critical Adjuvant Influences on Preventive Anti-Metastasis Vaccine Using a Structural Epitope Derived from Membrane Type Protease PRSS14

  • Ki Yeon Kim;Eun Hye Cho;Minsang Yoon;Moon Gyo Kim
    • IMMUNE NETWORK
    • /
    • 제20권4호
    • /
    • pp.33.1-33.19
    • /
    • 2020
  • We tested how adjuvants effect in a cancer vaccine model using an epitope derived from an autoactivation loop of membrane-type protease serine protease 14 (PRSS14; loop metavaccine) in mouse mammary tumor virus (MMTV)-polyoma middle tumor-antigen (PyMT) system and in 2 other orthotopic mouse systems. Earlier, we reported that loop metavaccine effectively prevented progression and metastasis regardless of adjuvant types and TH types of hosts in tail-vein injection systems. However, the loop metavaccine with Freund's complete adjuvant (CFA) reduced cancer progression and metastasis while that with alum, to our surprise, were adversely affected in 3 tumor bearing mouse models. The amounts of loop peptide specific antibodies inversely correlated with tumor burden and metastasis, meanwhile both TH1 and TH2 isotypes were present regardless of host type and adjuvant. Tumor infiltrating myeloid cells such as eosinophil, monocyte, and neutrophil were asymmetrically distributed among 2 adjuvant groups with loop metavaccine. Systemic expression profiling using the lymph nodes of the differentially immunized MMTV-PyMT mouse revealed that adjuvant types, as well as loop metavaccine can change the immune signatures. Specifically, loop metavaccine itself induces TH2 and TH17 responses but reduces TH1 and Treg responses regardless of adjuvant type, whereas CFA but not alum increased follicular TH response. Among the myeloid signatures, eosinophil was most distinct between CFA and alum. Survival analysis of breast cancer patients showed that eosinophil chemokines can be useful prognostic factors in PRSS14 positive patients. Based on these observations, we concluded that multiple immune parameters are to be considered when applying a vaccine strategy to cancer patients.

Levels of Viral Glycoprotein Provide a Measure of Modulated Chemotherapeutic Effect

  • Shin, Jaeyong;Yoon, Yeon-Sook;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • 제7권3호
    • /
    • pp.216-220
    • /
    • 1999
  • A chemosensitivity assay with small replicate Mm5mt/cl C3H mammary tumor cell cultures was developed to determine whether changes in viral antigen expression and release into culture fluids could be utilized as an in vitro measure of modulating drug effect. The 52,000 MW viral envelope glycoprotein (gp52) of the mouse mammary tumor virus (MMTV) was measured in culture fluids of control and drug-treated cultures while cell density was simultaneously determined by cell staining and OD 664 nm determination. While extra-cellular gp52 levels and cell density progressively increased over 72 hours for control cultures, declines in both parameters provided dual measures of effect for combination [N(phophonacetyl-L-aspartic acid)+5-fluorouracil], combination 〔N(phophonacetyl-L-aspartic acid )+5-fluoro-5'-deoxyuridine〕and single component treatment of this combination. At each treated time point, thesecombinations begin to produce a greater decline in both cell density and gp52 levels as compared to single drug treatments. These results indicate that N(phopho-nacetyl-L-aspartic acid) in combination can enhance the effectiveness of single drug.

  • PDF

Effects of Allicin on the Gene Expression Profile of Mouse Hepatocytes in vivo with DNA Microarray Analysis

  • Park, Ran-Sook
    • Nutritional Sciences
    • /
    • 제8권1호
    • /
    • pp.23-27
    • /
    • 2005
  • The major garlic component, Allicin [diallylthiosulfinate, or (R, S)-diallyldissulfid-S-oxide] is known for its medicinal effects, such as antihypertensive activity, microbicidal activity, and antitumor activity. Allicin and diallyldisulfide, which is a converted form of allicin, inhibited the cholesterol level in hepatocytes, in vivo and in vitro. The metabolism of allicin reportedly occurs in the microsomes of hepatocytes, predominantly with the contribution of cytochrome P-450. However, little is known about how allicin affects the genes involved in the activity of hepatocytes in vivo. In the present study, we used the short-term intravenous injection of allicin to examine the in vivo genetic profile of hepatocytes. Allicin up-regulate ten genes in the hepatocytes. For example, the interferon regulator 1 (IRF-I), the wingless-related MMTV (mouse mammary tumor virus) integration site 4 (wnt-4), and the fatty acid binding protein 1. However, allicin down-regulated three genes: namely, glutathione S-transferase mu6, a-2-HS glycoprotein, and the corticosteroid binding globulin of hepatocytes. The up-regulated wnt-4, IRF-1, and mannose binding lectin genes can enhance the growth factors, cytokines, transcription activators and repressors that are involved in the immune defense mechanism. These primary data, which were generated with the aid of the Atlas Plastic Mouse 5 K Microarray, help to explain the mechanism which enables allicin to act as a therapeutic agent, to enhance immunity, and to prevent cancer. The data suggest that these benefits of allicin are partly caused by the up-regulated or down-regulated gene profiles of hepatocytes. To evaluate the genetic profile in more detail, we need to use a more extensive mouse genome array.