• Title/Summary/Keyword: mouse fetus/neonate

Search Result 2, Processing Time 0.015 seconds

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.

Expression of Nesfatin-1/NUCB2 in Fetal, Neonatal and Adult Mice

  • Chung, Yiwa;Jung, Eunhye;Kim, Heejung;Kim, Jinhee;Yang, Hyunwon
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.461-467
    • /
    • 2013
  • Nesfatin-1/NUCB2, which is associated with the control of appetite and energy metabolism, was reported for the first time to be expressed in the hypothalamus. However, recent studies have shown that nesfatin-1/NUCB2 was expressed not only in the hypothalamus, but also in various tissues including digestive and reproductive organs. We also demonstrated that nesfatin-1/NUCB2 was expressed in the reproductive organs, pituitary gland, heart, lung, and gastrointestinal tract of the adult mouse. However, little is known about nesfatin-1/NUCB2 expression in fetal and neonatal mice. Therefore, we examined here the distribution of nesfatin-1/NUCB2 in various organs of fetal and neonatal mice and compared them with the distribution in adult mice. As a result of immunohistochemical staining, nesfatin-1/NUCB2 protein was expressed relatively higher in the lung, kidney, heart, and liver compared to other organs in the fetus. Western blot results also showed that nesfatin-1/NUCB2 protein was detected in the lung, kidney, heart, and stomach. Next, we compared the expression levels of nesfatin-1/NUCB2 mRNA in the fetus and neonate with the expression levels in both male and female adult mice. The expression levels in heart, lung, stomach, and kidney were higher compared with other organs in fetal and neonatal mice and in both male and female adult mice. Interestingly, the expression of nesfatin-1/NUCB2 mRNA in the kidney was dramatically increased in male and female adult mice compared to fetal and neonatal mice. These results indicate that nesfatin-1/NUCB2 may regulate the development and physiological function of mouse organs. In the future, we need more study on the function of nesfatin-1/NUCB2, which is highly expressed in the heart, lung, and kidney during mouse development.