• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.03 seconds

Air Gap Change of a Maglev Vehicle at the Moment a Linear Induction Motor Runs (자기부상열차 가속 순간 부상공극 변화)

  • Shin, Hyeon-Jae;Han, Hyung-Suk;Kim, Dong-Sung;Kim, Bong-Seup
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1218-1223
    • /
    • 2009
  • LIM(Linear induction motor)s are the main type of motors used for urban Maglev vehicles because they are less expensive to operate at a lower speed than linear synchronous motors. An LIM generates an attraction force while running, which perturbs the air gap of the electromagnet. This undesirable air gap variation could result in the mechanical contact of an electromagnet with the reaction plate. For this reason, the magnitude of the air gap variation must be limited within a certain range. The air gap changes when running the 1/2 vehicle under development for testing are analyzed through a test on the test track at KIMM. The results from this study could be used to minimize the air gap variations due to attraction force from LIM.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Analysis of the Cooling System for Traction Motors of the High-Speed EMU (동력분산형 고속 전철의 견인전동기 냉각 시스템 해석 및 설계기술 연구)

  • Seo, Jang-Ho;Lee, Sang-Yub;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1188-1194
    • /
    • 2008
  • To cope with the demagnetization risk of permanent magnets used in Interior Permanent Magnet Synchronous Motors(IPMSM), an accurate iron analysis and thermal analysis are very important. In this research, to calculate thermal increment of IPMSM for high-speed traction motor, we will extract losses of IPMSM considering the condition of field weakening control. Then we will input the calculated losses such as iron loss and copper loss as the thermal sources. Based on magnetic filed and thermal analysis, we will support the design of IPMSM for high-speed train.

  • PDF

Evaluation on Insulation Performance of Low-voltage Induction Motors by Partial Discharge Measurement (부분방전 측정에 의한 저압용 유도전동기의 절연성능 평가)

  • Park, Dae-Won;Choi, Su-Yeon;Choi, Jae-Sung;Kil, Gyung-Suk;Lee, Kang-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1887-1891
    • /
    • 2008
  • In this paper, we dealt with a partial discharge (PD) measurement method that has been accepted as an effective and non-destructive technique to estimate insulation performance of low-voltage induction motors. The PD measurement system consists of a coupling network, a low noise amplifier, and associated electronics. A shielded box was used to reduce environmental noise. Frequency characteristic of the coupling network was estimated by a sinusoidal signal input, and the low cut-off frequency of the coupling network was 1 MHz (-3 dB). Also, we carried out a calibration test for the PD measurement system. Sensitivity of the system was of 84 m$V_{max}$/pC between stator winding and enclosure. In application test on a low-voltage three phase induction motor (5 HP), we could detect 88 pC at AC 800 $V_{max}$.

  • PDF

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle;Yang, Jiaqiang;Yin, Dejun;Chen, Yangsheng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2150-2161
    • /
    • 2016
  • Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

A Study on The Rotor Position Detection of Bifilar-Wound Hybrid Stepping Motors (복권형 하이브리드 스테핑 전동기의 회전자 위치 검출에 대한 연구)

  • Yu, K.N.;You, J.-Bong;Woo, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.187-191
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by the modeling of the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. It is shown that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

Computer Aided Optimum Design Technique for Three-Phase Induction Motors (3상 유도전동기의 전산화 최적설계기법)

  • Kim, Dai-Heui;Lee, Ki-Sik;Hwang, Seuk-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.312-314
    • /
    • 1997
  • In this paper, Computer Aided Optimum Design Technique for Three-Phase Induction Motors is proposed. In the technique, reference magnetic flux, specific electric loading factor, specific magnetic loading factor(magnetic flux density) and current density are adopted as design parameters, and minimum total cost including material cost and loss power cost is adopted as a objective function which has to satisfy output condition too. As a result of application to the existing motor, it is proved that this technique is very effective in view of gradually increasing energy costs.

  • PDF

Characteristic Analysis of Single Phase Induction Motor Having Modified Rotor (변형회전자를 가진 단상유도전동기의 특성해석)

  • Kim, Ki-Bong;Kim, Pan-Dol;Park, Yoon-Sur
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.51-53
    • /
    • 1997
  • Even though, many types of induction motors are known, most of the single phase induction motors being used are of squirrel cage type. However, basic structure of the machine has not been changed a lot during the past century. Author had been experienced many experiments with modified rotor. The modification was completed by doing two procedures: an elimination of lamination in central pan of the rotor and filling of melted aluminium in it instead. This paper demonstrates the reason for higher efficiency.

  • PDF

Evaluation of DC Brush-less Motors Using Powder Magnetic Cores

  • Mori, Katsuhiko;Nakayama, Ryoji;Kanagawa, Kinji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1169-1170
    • /
    • 2006
  • We made a high-speed motor and a DC brush-less motor for factory automation (FA) to investigate applicability of powder magnetic core to motor application, and compared those performances with the similar motors having conventional electro magnetic steel core. Permeability and saturated magnetization of powder magnetic core are less than those of elect romagnetic steel core, however output performances of each core motor are almost the same. The FA motor with powder magnetic core using three-dimensional magnetic circuit showed higher torque than the same volume motor with electromag netic steel core.

  • PDF

A New Ultrasound Bladder Scanner to Estimate Urine Volume Using Hand-Motion Scan (손 동작 스캔을 이용한 잔뇨량 측정용 초음파 방광 스캐너)

  • Lee, Jung Hwan;Bae, Jung Ho;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • 3D ultrasound bladder scanners are getting popular in hospitals for the patients with bladder dysfunction. A current bladder scanner adopts a mechanical scan to acquire 3D images and requires two motors and complicated mechanical devices. In this paper, we propose a new ultrasound bladder scanner using hand-motion scan. Instead of two motors and mechanical devices, it has a motion sensor to record transducer positions during hand-motion scan. The experiments with a bladder phantom and volunteers showed similar measurement accuracy to a conventional 3D ultrasound bladder scanner. We expect that the proposed method will reduce the cost and size of the bladder scanner.