• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.033 seconds

High Performance Switched Reluctance Motor Drive for Automobiles using C-dump Converters

  • Song Sang-Hoon;Yoon Yong-Ho;Lee Tae-Won;Kim Yeun-Chung;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.992-996
    • /
    • 2004
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, and in heating, ventilating, and air-conditioning (HVAC) system. At present, most of dc motors are supplied by 12V or 24V batteries. However, DC motors surfer from lack of efficiency, low life cycles and unreliability. Therefore, there is a growing interest in substituting DC motors for advanced AC motors including switched reluctance motors. Although there are several other forms SRM converters, they are either unsatisfactory to the control performance or unsuitable for the 12V-battery powered 3-phase SRM drives. Taking into account the requirement for effective operation and simplicity structure of converter in the limited internal environment of automobiles, the author inclines toward selecting the modified C-dump converter as well as the energy efficient C-dump converter. This is so that more economical and efficient converter topology in automobile industries can be utilized. This paper describes the foundation for the design and development of a 12V-250W-3000rpm SRM drives for automobiles. Furthermore, complete circuit, computer simulation and experiment results are presented to verify the performance of the C-dump converters.

  • PDF

A Study for Medical Precision Control Machine Using AX-12

  • Jo, Heung-Kuk
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.591-594
    • /
    • 2010
  • Control devices perform various works for us in many areas. The device is being utilized for precision movement of certain object. In as much as control devices are activated by means of motors, motor control is important.[1][2] Generally, servo motors capable of precision control are more frequently used than DC motors. Use of 3 motors allows 3- way movement. Medical controllers for surgical operation require high precision. [3][4][5][6] AX-12, a servo motor can realize various types of movement. AX-12 can be easily manufactured in the form of a robotic arm and has features that MCU and its peripheral circuits are simple. For precision movement, 3 motors can be controlled by use of a single joystick and 2 buttons, with movement angles being adjusted by having preset values in the program changed.[7][8] By virtue of this study, we have realized small precision robotic arm system utilizing single joystick and 2 buttons. This system can control the robotic arm in the direction desired by the user. The system has been designed such that a joystick controls 2 motors with the remaining motor being controlled by a button. Single MCU is tasked with both control and movement.[9] We have shown precision robotic arm system in the Figure contained in the conclusion part and made reference to results of analysis in there. It has also been demonstrated that the system can be utilized in the industry.[8]

Various Haptic Effects Based on Simultaneous Actuation of Motors and Brakes (모터와 브레이크의 동시구현에 기초한 다양한 햅틱효과의 제시)

  • Kwon Tae-Bum;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.602-608
    • /
    • 2005
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic devices. Motors can generate a torque in any direction, but they can make the system active during operation, thus leading to instability. Brakes can generate a torque only against their rotation, but they dissipate energy during operation, which makes the system intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. Among various haptic effects, contact with the virtual wall, representation of friction and representation of plastic deformation have been investigated extensively in this paper. It is shown that the hybrid haptic device is more suited to some applications than the motor-based haptic device.

Modeling And Simulation of the Switching Time Calculation When Starts Asynchronous Motors using Matlab Software (비동기모터 기동시 Matlab을 이용한 스위칭시간 계산의 모델링 및 시뮬레이션)

  • Bae, Cherl-O;Vuong, Duc-Phuc
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.73-73
    • /
    • 2011
  • In fact, asynchronous motors are used widely. Asynchronous motors which have large power (compared to the source supplies) is needed to start them in various methods. The theory of application reduced voltage to motor's stator or variable resistor fed rotor for the purpose of altering the motor's torque and power consumption characteristics is an idea that has existed for many years. These concepts have flourished mainly due to the need to limit torque and limited generator/power distribution capabilities. However, how can know exactly the time of switching steps with different types of motors as well as load characteristics is very difficult. This paper focuses on the design and development mathematical models of motor[1][2], load, ACB, asynchronous machine and then is implemented in SIMULINK in order to calculate this time, special on ships where power generation station is limited. The simulation results are both compared and discussed in detail so that it can apply to conclude the most suitable and applicable starting time for new system with various motors and load.

  • PDF

Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals (진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단)

  • Jeong, In-Kyu;Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF

Development of a Remote Object's 3D Position Measuring System (원격지 물체의 삼차원 위치 측정시스템의 개발)

  • Park, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.60-70
    • /
    • 2000
  • In this paper a 3D position measuring device that finds the 3D position of an arbitarily placed object using a camersa system is introduced. The camera system consists of three stepping motors and a CCD camera and a laser. The viewing direction of the camera is controlled by two stepping motors (pan and tilt motors) and the direction of a laser is also controlled by a stepping motors(laser motor). If an object in a remote place is selected from a live video image the x,y,z coordinates of the object with respect to the reference coordinate system can be obtained by calculating the distance from the camera to the object using a structured light scheme and by obtaining the orientation of the camera that is controlled by two stepping motors. The angles o f stepping motors are controlled by a SGI O2 workstation through a parallel port. The mathematical model of the camera and the distance measuring system are calibrated to calculate an accurate position of the object. This 3D position measuring device can be used to acquire information that is necessary to monitor a remote place.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

High Performance Control of SRM Drive System for Automobiles by C-dump Converter (C-dump Converter에 의한 차량용 SRM 구동 시스템의 고성능제어)

  • 김도군;윤용호;이태원;원충연;김영렬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.534-542
    • /
    • 2003
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, HVAC etc. At present, most of them are DC motors supplied by 12V or 24V batteries. However, DC motors suffer from low efficiency, life cycles and reliability. Therefore, there is a growing interest in substituting DC motors for advanced at motors including switched reluctance motors(SRM). Although there are several other forms SRM convertors, they are either unsatisfactory to the control performance or unsuitable for the 12V battery source. Especially, a conventional asymmetric converter of SRM provides the best flexible and effective control to the current waveform of SRM, but it has the most switches and produces conducting voltage drops across two power switches during SRM operation. For automotive applications with a 12V battery source, this circuit is inadequate. For considering the requirement for effective operation and simple structure of converter in the limited internal circumstance of automobiles, the author inclines toward selecting Modified C-dump converter and Energy efficient c-dump converter.

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

Characteristics Analysis of Aixal Flux Permanent Magnet core-less motor (축 방향 자속 코어레스 전동기의 특성 해석)

  • Seo, Young-Taek;Kong, Jeong-Sik;Kim, Chul-Ho;Kim, Hyoung-Gil;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.676-678
    • /
    • 2002
  • This paper deals with the design and characteristic analysis of a coreless an axial flux permanent magnet (AFPM) motor. Axial-flux permanent magnet motors prove to be the best candidate for application in electric vehicles (EVs) as direct-drive wheel motors, as in comparison with conventional motors they allow design with higher compactness, lightness and efficiency. Recently, issues regarding environment and the diversification of dependence in oil are watched with keen interest. In this theses, through the simulation of AFPM for low and high torque which has stator in the center and two rotors each side, understand its specialty, with this, make a prototype motor and design drive which can enhance the motors stability in low speed. Especially, specialty of motors torque power output will be mainly talked and based on this, possibility of application in EVs will be inspected by the theoretical study and the test.

  • PDF