• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.024 seconds

Optimization of Voice Coil Motors for a Small Guided Missile Fin Actuator (소형 유도무기 날개 작동기용 보이스 코일 모터의 최적 설계)

  • Lee, Choong Hee;Kim, Gwang Tae;Lee, Byung Ho;Cho, Young Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2019
  • In this study, optimal design of direct-drive VCMs (Voice Coil Motor) for a missile fin actuator is carried out. The torque performance and the characteristics of the VCM are predicted by commercial electromagnetic analysis software, ANSYS Maxwell. The optimal design is obtained at the minimum and maximum actuating angles where the aerodynamic load acting on the fin is the largest in the operating range. The critical variables of the actuator is designed and the RSM (Response Surface Method) is used for the optimization. The response surface model consists of second-order functions and its experimental points are selected by a central composite design. This design is widely used for fitting a second-order response surface. The adjustment regression coefficients is computed for adequacy checking of the response surface model. Finally, the torque values obtained by the RSM and the ANSYS Maxwell are shown in good agreement.

Development of Position Sensor Detection Circuit using Hall Effect Sensor (Hall Effect Sensor를 이용한 위치센서 검출회로개발)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • BLDC motors are getting better performance due to the improvement of material technology including high performance of permanent magnets, advancement of driving IC technology with high integration and high functionality, and improvement of assembly technology such as high point ratio. While having the advantage of such a square wave driven BLDC motor, interest in the design and development of a square wave driven BLDC permanent magnet motor and development of a position detection circuit and driver is increasing in order to more meet the needs of users. However, in spite of the cost and functional advantages due to reduced efficiency, switching loss and vibration, noise, etc., the application is somewhat limited. Therefore, in this paper, we study a position detection circuit that generates a sinusoidal signal in proportion to the magnetic flux of a BLDC motor rotor using a Hall Effect Sensor that generates a sinusoidal wave to increase the efficiency of the motor, reduce ripple, and drive a sinusoidal current with excellent speed and torque characteristics.

Initial Rotor Polarity Detection of Single-phase Permanent Magnet Synchronous Motor Based on Virtual dq-axis (단상 영구자석 동기 전동기의 가상 dq축 기반 초기 회전자 자극 검출)

  • Seo, Sung-Woo;Hwang, Seon-Hwan;Lee, Ki-Chang
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1004-1010
    • /
    • 2020
  • This paper proposes an initial rotor magnetic pole detection method for single-phase permanent magnet synchronous motors. The target motor cannot obtain position information based on the back emf in the low speed and stop state. Therefore, an open loop starting process is required, and in this process, initial rotor position information for low current and soft start is need. The proposed initial rotor magnetic pole detection algorithm considers the effect of asymmetric air- gap and magnetic flux. In addition, the high-frequency voltage signal injection and the offset voltage for accurate detection is used. As a result, the permanent magnet poles are is determined by acquiring the maximum value of the induced current using the virtual dq-axis.

A Study on Converter Topology to Drive Switched Reluctance Motor (SRM) (스위치드 릴럭턴스 전동기(SRM) 구동용 Converter Topology 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Switched Reluctance Motor (SRM) has a characteristic that the inductance changes very nonlinearly depending on the magnitude of the current and the relative position of the rotor and stator, and the torque is generated In consideration of these problems, many studies have been conducted on a topology for driving that can improve efficiency and performance in an existing asymmetric bridge converter in order to simplify the circuit and economic efficiency. Therefore, in this paper, we want to check the performance by comparing and analyzing each converter used by applying it as a topology for SRM driving. The driving converters applied to the comparison and analysis are Conventional C-dump, Modified C-dump, Energy efficient C-dump, Resonant C-dump converter with C-dump converter type structure and the most widely used asymmetric bridge converter and 6-Switch inverter that used for general motors.

Performance Analysis of Cost Effective Portable Solar Photovoltaic Water Pumping System

  • Parmar, Richa;Banerjee, Chandan;Tripathi, Arun K.
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Solar water pumping system (SWPS) is reliable and beneficial for Indian farmers in irrigation and crop production without accessing utility. The capability of easy installation and deployment, makes it an attractive option in remote areas without grid access. The selection of portable solar based pumps is pertaining to its longer life and economic viability due to lower running cost. The work presented in this manuscript intends to demonstrate performance analysis of portable systems. Consequent investigation reveals PSWS as the emerging option for rural household and marginal farmers. This can be attributed to the fact that, a considerable portion (around 45.7%) of the country's land is farmland and irrigation options are yet to reach farmers who entirely rely on rain water at present for harvesting of the crops. According to census 2010-2011 tube wells are the main source for irrigation amongst all other sources followed by canals. Out of the total 64.57-million-hectare net irrigation area, 48.16% is accounted by small and marginal holdings, 43.77% by semi-medium and medium holdings, and 8.07% by large holdings. As per 2015-16 census data, nearly 100 million farming households would struggle to make ends meet. The work included in this manuscript, presents the performance of different commercial brands and different technologies of DC surface solar water micro pumping systems have been studied (specifically, the centrifugal and reciprocating type pumps have been considered for analysis). The performance of the pumping systems has been analyzed and data is evaluated in terms of quantity of water impelled for specific head. The reciprocating pump has been observed to deliver the best system efficiency.

Circuit Design for Noise Removal of Sine Wave Hall Sensor Signal (정현파 Hall Sensor 신호의 잡음제거를 위한 회로설계)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.135-141
    • /
    • 2021
  • Interest is growing in the design and development of square wave driven BLDC permanent magnet motors suitable for industrial automation, and the development of position detection circuits and drivers. However, this motor is somewhat limited in its application despite the price and functional advantages due to the decrease in efficiency due to switching loss and vibration and noise. In the process of designing and assembling a BLDC motor, the magnetic pole angle is not uniform or the magnetic flux distribution is distorted due to problems in magnetic circuit design or product non-uniformity in the assembly process. Therefore, these things cause position detection deviation and deteriorate the motor characteristics. In addition, the sine wave driven BLDC system can operate stably only when the signal generated from the position sensor is accurately fed back to the driver. However, since the generated signal cannot perform stable position detection due to the occurrence of DC offset component due to magnetic flux density deviation or magnetization technology, which is an external influence, this study intends to study the proposed circuit that can remove the DC offset component.

Design and Analysis of Cell Controller Operation for Heat Process (열공정에 대한 셀 콘트롤러 운영의 설계와 해석)

  • So, Ye In;Jeon, Sang June;Kim, Jeong Ho
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.22-31
    • /
    • 2020
  • The construction and operation of industrial automation has been actively taking place from manufacturing plan to production for improving operational efficiency of production line and flexibility of equipment. ISO/TC184 is standardizing on operating methods that can share information of programmable device controllers such as PLC and IoT that are geographically distributed in the production line. In this study, the design of the cell controller consists of PLC group and IoT group that perform signals such as temperature sensors, gas sensors, and pressure sensors for thermal processes and corresponding motors or valves. The operation and analysis of the cell controller were performed using SDN(Software Defined Network) and the three types of process services performed in thermal processes are real-time transmission service, loss-sensitive large-capacity transmission service, and normal transmission service. The simulation result showed that the average loss rate improved by about 17% when the traffic increased before and after the application of the SDN route technique, and the delay in the real-time service was as low as 1 ms.

  • PDF

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.

Proposal of autonomous take-off drone algorithm using deep learning (딥러닝을 이용한 자율 이륙 드론 알고리즘 제안)

  • Lee, Jong-Gu;Jang, Min-Seok;Lee, Yon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2021
  • This study proposes a system for take-off in a forest or similar complex environment using an object detector. In the simulator, a raspberry pi is mounted on a quadcopter with a length of 550mm between motors on a diagonal line, and the experiment is conducted based on edge computing. As for the images to be used for learning, about 150 images of 640⁎480 size were obtained by selecting three points inside Kunsan University, and then converting them to black and white, and pre-processing the binarization by placing a boundary value of 127. After that, we trained the SSD_Inception model. In the simulation, as a result of the experiment of taking off the drone through the model trained with the verification image as an input, a trajectory similar to the takeoff was drawn using the label.

Aerodynamic Analysis, Required Power and Weight Estimation of a Compound (Tilt rotor + Lift + Cruise) Type eVTOL for Urban Air Mobility using Reverse Engineering Techniques (역설계 기법을 사용한 도심항공 모빌리티용 복합형(틸트로터 + 양력 + 순항) eVTOL의 공력 해석, 요구 동력 및 중량 예측)

  • Kim, Dong-Hee;Lee, Joon-Hee;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • Recently, eVTOL, the next-generation of eco-friendly transportation, has been in the spotlight due to global warming along with traffic jams in large cities of many countries. This study benchmark the external features of Hyundai Motors S-A1, a compound eVTOL combined fixed and tilt rotors among many types of eVTOLs, to create the basic configuration using reverse design techniques. Basic configurations were created using CATIA and aerodynamic analyses were performed using the aircraft design and aerodynamic analysis programs, OpenVSP, XFLR5, and the aircraft wetted area, drag, and lift were calculated after selecting the airfoil, incidence angle, and dihedral and anhedral angles through trade study. Also, required powers were estimated for completing the given mission profile and components weight and the total weight were predicted using the estimation formula and data survey.