• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.028 seconds

A New Test Method to Evaluate Influence of $Al_2O_3$ to Rubber Insulator in Solid Propellant Rocket Motor (고체추진기관의 $Al_2O_3$가 고무내열재에 미치는 영향을 평가하는 시험방법 연구)

  • Lee, Hyung-Sik;Kang, Yoon-Goo;Lim, Soo-Yong;Oh, Jong-Yun;Lee, Kyung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.9-14
    • /
    • 2011
  • In solid propellant rocket motors, $Al_2O_3$, one of combustion products, can be accumulated inside a combustion chamber. A special rocket motor was designed and tested to simulate thermal reaction of rubber insulator affected by the deposited slag. We successfully demonstrated through a dynamic radioscopy that the slag was deposited at the location as designed. In this paper we present a new test method which can simulate a high temperature and pressure environment in combustion chamber to evaluate material characteristics of rubber insulator and can provide design data to decide its thickness for a new solid rocket motor. The solid rocket motor, which has an average chamber pressure of 770 psia and a burning time of 50 seconds, was tested. The results show that erosion of EPDM insulator is more affected by a gas velocity rather than by the thermal reaction of slag with a high thermal capacity.

An Evaluation on Thermal-structural Behavior of Nozzle Assembly during Burning Time (연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구)

  • Ro, Younghee;Seo, Sangkyu;Jeong, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • A great deal of difficulty is encountered in the thermo-mechanical analyses of nozzle assemblies for solid propellant rocket motors. The main issue in this paper is the modeling of the boundary conditions and the connections between the various components-gaps, relative movements of the components, contacts, friction, etc. This paper evaluates the complex phenomena of nozzle assemblies during burning time with co-simulations that include fluid, thermal surface reaction/ablation, and structural analysis. The validity of this approach is verified via comparison of analysis results with measured strains.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

Study on icebreaking performance of the Korea icebreaker ARAON in the arctic sea

  • Kim, Hyun-Soo;Lee, Chun-Ju;Choi, Kyung-Sik;Kim, Moon-Chan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.208-215
    • /
    • 2011
  • A full-scale field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. The first Korean icebreaking research vessel 'ARAON', after her delivery in late 2009, had a sea ice field trial in the Arctic Sea during July-August, 2010. This paper describes the test procedures and data analysis on the icebreaking performance of the IBRV ARAON. The data gathered from the icebreaking performance test in the Chukchi Sea and the Beaufort Sea during the Arctic voyage of ARAON includes the speed and engine power of the ship as well as sea ice thickness and strength data. The air temperature, wind speed and heading of the ship were also measured during each sea ice trial. The ARAON was designed to break 1 m thick level ice with a flexural strength of 630kPa at a continuous speed of 3knots. She is registered as a KR POLAR 10 class ship. The principal dimensions of ARAON are 110 m, 19 m and 6.8 m in length, breadth and draft respectively. She is equipped with four 3,500kW diesel-electric main engines and two Azipod type propulsion motors. Four sea ice trials were carried out to understand the relationship between the engine power and the ship speed, given the Arctic ice condition. The analysis shows that the ARAON was able to operate at 1.5knots in a 2.5m thick medium ice floe condition with the engine power of 5MW, and the speed reached 3.1 knots at the same ice floe condition when the power increased to 6.6MW. She showed a good performance of speed in medium ice floe compared to the speed performance in level ice. More detailed analysis is summarized in this paper.

A experimental Study on Insulation Breaking Fire Case of Starter Motor B Terminal (스타트모터 B단자 절연파괴 화재사례에 대한 실험적 연구)

  • Woo, Seung Woo;Park, J.M.;Hyun, B.S.;Nam, J.W.;Park, W.S.;Kim, J.P.;Cho, Y.J.;Goh, J.M.;Park, N.K.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.55-62
    • /
    • 2019
  • In this paper, we introduce a case of a fire accident during parking of a large truck that is repeatedly occurring. The shape and location of the combustion and electrical singularity commonly found in other vehicle fire accidents could limit the starter motor as the ignition section. In addition, it was possible to confirm the electrical melting singularity that could act as a cause of ignition between the start motor B terminal and the start motor enclosure. By combining the above investigations and investigations, it was possible to estimate the electric fire expressed from insulation breaking of the starter motor B terminal, and by using the renewable starter motor comparison product mounted on the fire vehicle, an experiment was performed to reproduce the ignition process from the starter motor under specific conditions. So. It is hoped that this will raise awareness about vehicle fires, which can lead to large fires or casualties, share the risks of using starter motors for regeneration, and help in the rapid and accurate investigation of similar vehicle fires in the future.

The Design of a Battery Power System and Its Performance Evaluation on the Ground for Vertical Takeoff and Landing Drones (수직 이착륙 무인기용 배터리 전력 시스템 설계 및 지상 시험 평가)

  • Gang, Byeong Gyu
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 2021
  • This research shows how is designed, and its performance is evaluated on the ground for the VTOL drone before the flight test initiates. The targeted drone weight is approximately 45 kg including battery packs, and 4 motors are utilized to produce thrust and control directions. 30 min flight schedules were simulated to estimate the total power consumptions which result in 2.4 kWh. Then, two packs of 13-cells lithium-polymer battery with operating voltage ranging between 54 V and 44 V with up to 4 C-rate were fabricated to safely operate a VTOL drone. Moreover, the battery management system was installed to prevent over and under-voltage and over-current while running a battery system. To finally verify battery's performance, we conducted a ground evaluation for discharging battery tests at -10 ℃, 25 ℃ and 40 ℃, resulting in satisfying simulated power consumption conditions for flight schedules.

Gear Strength Evaluation of Electric Axle for Construction Machinery using Simulation Model (Simulation Model을 이용한 건설기계용 전동식 액슬의 기어 강도 평가)

  • Han, Hyun-Woo;Park, Young-Jun;Lee, Ki-Hun;Oh, Joo-Young;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.44-53
    • /
    • 2021
  • As environmental issues have emerged worldwide, emission gas regulations have been strengthened. In the construction machinery sector, studies have been actively conducted to utilize the power source of electric motors owing to the increasing demand for zero emissions. In this study, the gear specifications of an electric axle for construction machinery were selected by considering the specifications of the motor, gear tooth contact pattern, and face load factor. The gear strength evaluation was performed at the system level using the simulation model. The bending and contact strength of the spiral bevel gears and the bending strength of the planetary gear set showed a safety factor of 1 or more. However, the contact strength of the planetary gear set showed a safety factor of 0.92. Conservative results were derived by performing the analysis under the rated load condition of the motor. However, the ratio of the equivalent torque to the rated torque of the motor was 45% or less, hence, it was determined that no difficulties should arise regarding the durability of the axle.

Conceptual Design for Fully Electrified Car Ferry Powered by Removable Battery System (이동식 전원공급장치 기반 전기추진차도선의 개념설계 연구)

  • Lee, Jun-Ho;Jang, Dong-Won;Jin, Song-Han;Shin, Seung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.856-866
    • /
    • 2021
  • The increasing international awareness regarding air pollutant reduction has resulted in increasing demand for eco-friendly ships; hence, electric ships are being actively developed by various countries. Presently, studies on electric ships are mainly focused on electric propulsion systems and electric motors. However, from the ship perspective, there are no studies on conceptual designs for coastal car ferries powered by removable power supply systems. In the present study, the main research consideration is regarding the conceptual design of a fully electrified car ferry using a battery-based removable system as the main power source. By analyzing the dimensions of more than 100 domestic coastal car ferries, the main criteria satisfying the requirements for developing a suitable vessel were derived, and a study on intact/damage stability was conducted considering the application of a removable battery truck. Further analyses of the problems concerning the conceptual design were also performed to derive solutions.

Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing (궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건)

  • Lee, Hyoung-Tae;Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships (친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향)

  • Kim, Sehwan;Choi, Gilsu;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.556-564
    • /
    • 2021
  • This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.