• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.027 seconds

The Auxiliary Winding Control Characteristics of Single-Phase Induction Motor by Universal Starting Switch (범용 기동기에 의한 단상유도전동기의 보조권선 제어 특성)

  • 임홍우;임병옥;정수복;조금배;백형래
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.396-401
    • /
    • 2004
  • Single phase induction motor(SPIM) is one of the most widely used type of low power AC motors in the world, especially for domestic or commercial applications where a three phase power supply is not available. Single phase induction motors have no starting torque their own. So there are several ways of starting single phase induction motors. The most common type is the starting capacitor installed in series with the auxiliary winding to increase the starting torque. In the conventional systems, this function is conducted by a centrifugal switch. But the mechanical centrifugal switch has many problems such as switch malfunction. This paper presents the auxiliary winding control using digital universal starting switch to overcome these shortcomings of centrifugal switch.

The Evaluation of Medium Voltage Motor's Current and Voltage Harmonics during Loading

  • Alboyaci, Bora;Yorukeren, Nuran
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • This paper presents the results of investigating harmonic levels on medium voltage motors at loading conditions in air separation plant. The essential results of the measurements of the medium voltage motor harmonics are summarized in the values for the total harmonic distortion (THD). Motors loading case is used to assess the current and voltage harmonic distortions. Proper system analysis is important when adding a new motor starting and controlling the equipment. With the result of the paper it is possible to suggest the most appropriate starting and control method. Two medium voltage motors of air separation unit measurement results and simulations are summarized. Both current and voltage harmonic distortions are fitted by using a linear and exponential regression model. The prediction of THD values can be used for this kind of process for future planning by utilities.

Magnetic Properties of Electrical Steel Material for Electric Machines Core (전기기기 코아용 전기강판 소재의 자기적 특성)

  • 하경호;차상윤;김재관
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.881-883
    • /
    • 2004
  • The high efficiency for motors has been continuously required for energy saving. The iron losses occurring in motor cores account for high percentage in the energy losses of motors, so that electrical steels with lower iron losses have been desired as core materials. It is necessary to understand the basic charecteristic of the electrical steel to design motors and establish manufacturing process for the loss reduction. Therefore, this paper deal with the basic characteristic related with the magnetic properties of electrical steels and descibes the cause of core loss in electrical machines.

  • PDF

A Rotor Speed Estimation of Induction Motors Using Sliding Mode Cascade Observer (슬라이딩 모드 축차 관측기를 이용한 유도 전동기 속도추정)

  • 김응석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • A nonlinear adaptive speed observer is designed for the sensorless control of induction motors. In order to design the speed observer, the measurements of the stator currents and the estimates of the rotor fluxes are used. The sliding mode cascade observer is designed to estimate the time derivatives of the stator currents. The open-loop observer is designed to estimate the rotor fluxes and its time derivatives using the stator current derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed is calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameters converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The simulation examples are represented to investigate the validity of the proposed observers for the sensorless control of induction motors.

Distributed Control of a Two Axis Convey Table Using Real-time Micro-Kernel (마이크로 커널을 이용한 2축 반송 테이블의 분산제어)

  • 이건영
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.182-187
    • /
    • 2004
  • In this paper, we propose a PC based distributed controller for a two axis convey table using real-time micro-kernel. PC, Windows program, gives an easy way to implement wealthy GUI and micro-kernel, ${\mu}$C/OS-II, provides a real-time capability to control devices. We built a real-time distributed control system using ${\mu}$C/OS-II kernel which needs to process the tasks for two motors within the desired time to synchronize the motion. We used both semaphore and message mail box for synchronization. Unlike the previous study where we used step motors for the actuator of two axes convey table, we rebuilt the convey table with DC motors and the dedicated position servo which had built in out lab, and then we implemented a realtime distributed control system by putting the micro-kernel into between PC and position servo. Moreover we developed the PC based graphic user interfaces for generating planar drawing image control. Experimental results also presented to show the Proposed control system is useful.

Characteristic Analysis and Design of a Single Phase Switched Reluctance Motor for High Speed Application

  • Kim, Youn-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.114-121
    • /
    • 2004
  • Switched reluctance motors have received much attention as a driving means for various industrial applications because they have simple construction, low cost and high efficiency. Nevertheless, the requirements of drive converters make it difficult to lower the overall system cost as compared with the DC motor application. Single phase switched reluctance motors (SPSRMs) provide a solution to the high cost problem since the number of switching power devices can be reduced and consequently the trials for application are increased. However, research involving SPSRMs, especially in the area of design work, is insufficient. This paper introduces a novel design methodology of single phase SRM. The design work for SPSRM comprises the determination of many variables such as stator and rotor pole arc as well as on, off and so on. Managing all variable combinations leads to lengthy computation time and a fault in the design process. For that reason, a reliable technique and brief procedure term are required in SPSRM design.

Detection of Broken Bars in Induction Motors Using a Neural Network

  • Moradian M.;Ebrahimi M.;Danesh M.;Bayat M.
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.245-252
    • /
    • 2006
  • This paper presents a method based on neural networks to detect the broken rotor bars and end rings of squirrel cage induction motors. At first, detection methods are studied, and then traditional methods of fault detection and dynamic models of induction motors by using winding function model are introduced. In this method, all of the stator slots and rotor bars are considered, thus the performance of the motor in healthy situations or breakage in each part can be checked. The frequency spectrum of current signals is derived by using Fourier transformation and is analyzed in different conditions. In continuation, an analytical discussion and a simple algorithm are presented to detect the fault. This algorithm is based on neural networks. The neural network has been trained by using information of a 1.1 KW induction motor. This system has been tested with a different amount of load torque, and it is capable of working on-line and of recognizing all normal and ill conditions.

Demagnetization Detection for IPM-type BLDCMs According to Irreversible Demagnetization Patterns and Pole-Slot Coefficients

  • Kang, Dong-Hyeok;Kim, Hyung-Kyu;Park, Jun-Kyu;Hyun, Seung-Ho;Hur, Jin
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • This paper proposes a method for detecting irreversible demagnetization using the harmonic analysis of back electromotive force (BEMF) in interior permanent magnet-type brushless DC motors. First, demagnetization patterns, such as equality, inequality, and weighted demagnetizations, are defined and classified by considering the possibility of demagnetization resulting from motor operating characteristics. Second, an available diagnostic model for the harmonic analysis of BEMFs is defined according to pole-slot coefficients because the characteristics of BEMFs under demagnetization conditions are affected by the combination of poles and slots. Third, BEMFs and their harmonic components under normal and demagnetization conditions are analyzed through simulation and experiment to verify the proposed demagnetization detection technique.

A Study on the Insulation Performance Improvement of Induction Motors Fed by IGBT PWM Inverter (IGBT PWM 인버터 구동 유도전동기의 절연성능 향상기술 연구)

  • Hwang D.H.;Park D.Y.;Kim Y.J.;Lee Y.H.;Kim D.H.;Lee I.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.335-339
    • /
    • 2001
  • The recent advancements in power electronic switching devices have enabled high frequency switching operation and have improved the performance of pulse-width modulated (PWM) inverters for driving induction motors. But, the insulation failures of stator winding have attracted much concern due to high dv/dt of IGBT PWM inverter. In this paper, the test results for evaluation on the stator winding insulation of low-voltage induction motors for IGBT PWM inverter applications are presented. The insulation characteristics are analyzed with partial discharge and dissipation factor tests. Also, insulation breakdown tests by switching pulse voltage are performed. An effective insulation technique to enhance the insulation strength is suggested from the test results.

  • PDF

The Characteristic of Voltage Sags in Distribution System with Induction Motor Loads (유도전동기 부하를 고려한 배전계통의 전압저하(sag)특성)

  • Oh, Yong-Taek;Kim, Jin-Sung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.69-73
    • /
    • 2006
  • The calculation of depth and duration of a sag is in both methods based on two simple assumptions. One is that due to the short circuit, the voltage drops to a low value immediately magnitude. Another is that when the fault is cleared. the voltage recovers immediately. These assumptions, however, do not hold in the case of a substantial part of the load consisting of electrical motors like in many industrial power systems. During the short circuit, the motors will slow down. Their reacceleration after the fault will increase the load current and thus prolong the voltage sag. This paper will discuss some of the aspects of the influence of induction motors on voltage sags.

  • PDF