• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.027 seconds

An Improved Operating Characteristics of Surface Permanent Magnetic Synchronous Generator for 5-Phase 5kW (5상 5kW 표면부착형 영구자석 동기발전기 특성개선)

  • Jung, Hyung-Woo;Kim, Min-Huei;Song, Hyun-Jik;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.53-61
    • /
    • 2013
  • This paper propose a improved operating characteristics of the 5-phase 5kW within developed the surface permanent mount synchronous generator (SPMSG) in order to make a study of a polyphase ac motors keeping hold of more advantages. The developed manufacturing motor was necessary to do improvement of voltage regulation, efficiency, operating characteristics, and so on at the rated load. There are remake a redesigned and distributed stator winding connection without changing the frames of stator and rotor core in previous established generator by a repeat tests. There are shown a amplitude and waveform of the generated electromotive force, FFT analysis of harmonics within output voltages, and reviewing a experiment results in load of resistive and 5-phase induction motor by variable generator output frequency.

Design and Implementation of Robot for Vision Education (영상처리 교육을 위한 로봇의 설계 및 구현)

  • Kim, Soon-Jae;Yu, Baek-Woon;Lee, Eun-Joo;Goo, So-Yeon
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.85-89
    • /
    • 2014
  • A variety of robot education comes out. However, robot associated with the image processing is insufficient. And it is difficult to various education through a robot. Image processing educational robot that is proposed is made by module type hardware, so it's convenient to assemble according to educational purposes with the robot. In image processing, the robot recognizes color and pattern and calculates angle and control four motors. Using the robot, you can learn image processing, how to use MCU and Encoder, related programs and motor control.

Study of the Reduction of Torque Ripples for Multi-pole Interior Permanent Magnet Synchronous Motors using Rotor Saliency (회전자 돌극 설계를 이용한 다극 매입형 영구자석 동기전동기의 토크리플 저감 연구)

  • Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6270-6275
    • /
    • 2014
  • The paper reports an improvement method on torque ripples of multi-pole interior permanent magnet synchronous motor (IPMSM) applied to a traction motor for hybrid electric vehicles. In the case of multi-pole IPMSM, the magnetic flux generated by a permanent magnet tends to leak through the bridge of the rotor without a link with stator windings. The slit design on the rotor surface was proposed to reduce torque rippling and increase the output power by reducing the leakage flux. Two design parameters for the slit are suggested for optimal design using the response surface method. As an analysis method, the 2D finite element method (FEM) was applied to consider magnetic saturation effect.

Design and Implementation of Hybrid VR lock system by Arduino Control (아두이노 제어를 통한 증강현실 도어록 설계 및 구현)

  • Lee, Kyung-Mu;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.97-103
    • /
    • 2014
  • Recently, digital door locks have been widely used as physical security devices for the door. Although they are convenient compared to the existing lock system, they have the problem of being opened by an electric shock. In this study, to improve safety, a method to hide the door-lock device inside and to display the door-lock on a user's smart-phone screen through the augmented reality is suggested. Furthermore, an additional function has been added which provides memo notes to facilitate communication among family members. The results of this study have been implemented by using motors to control locks, Wi-Fi shield, Arduino, and a virtually created door and showed desirable experimental results.

A Mock Running And Transient State Test of Propulsion VVVF Inverter for Electric Locomotive using A Inertia Load (관성부하를 이용한 전동차 추진용 VVVF 인버터의 모의주행 및 과도상태시험)

  • 정만규;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.491-499
    • /
    • 1999
  • This paper is on the high perfonnance propulsion IGBT VVVF inverter adopted new technique for railways. To prove the high performance and stabilit~r of traction, running tests are carried out under the simulated condition alike real field. The tests are perfonned on not only a steady states but also a transient states such a as input voltage variation using inertia load equivalent to 160tons train. The vector control technique is a adopted to improve traction for 4 motors. The low switching synchronous PW1\l method based on a space v voltage vector modulation is pro\XlSed as the optimal method for propulsion system railway. The output voltage l is controlled continuously to six step by prolxlsed ovennodu]ation technique without sudden torque variation.

  • PDF

Characteristic Analysis of Independent 3 phase BLDC Motor (독립 3상 BLDC 전동기의 특성해석에 관한 연구)

  • Jo, Kwan-Jun;Oh, Jin-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2007
  • This paper describes independent phase BLDC motor with a maximum torque among BLDC motor used for electric propulsion system Independent phase BLDC motor has characteristic that phases of stator we independent electrically. This paper is modeling two type of 3 phases BLDC motors, one has Y-connection type and the other has independent type, and it shows simulation of them, compares its characteristics. As a result of simulation, phase voltage of independent 3 phase BLDC motor is higher than Y-connection three phase BLDC motor. When the stator resistance and inductance are stable, high phase voltage causes an increase in maximum phase current and an increases in it serially causes an increase of maximum torque. It is also found that the current pulsation of independent phase BLDC motor was decreased by controlling phase current of independent BLDC motor.

Vector Control for Two-Phase Inverter-Fed Two-Phase Induction Motors (2상 유도전동기 구동 2상 인버터의 벡터 제어)

  • Jang, Do-Hyun;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, the system equation for the balanced two-phase induction motor is derived and the characteristics for speed control is also analyzed in the region of constant torque and constant power. The modified vector control theory is applied to two-phase motor drive system. The speed of two-phase motor drive can be controlled precisely by the modified indirect vector control theory. The modified vector control theory is simpler comparing to the conventional vector control because of the simpler axis transformation. The computer simulations and the experimental results presented to confirm the vector control for two-phase inverter fed two phase induction motor system.

Online Turn-Off Angle Contro1 for Performance Optimization of the Switched Reluctance Motor (온라인 턴 오프각제어를 통한 SRM의 성능최적화)

  • Jeong, Byeong-Ho;Choi, Youn-Ok;Lee, Kang-Yeon;Cho, Geum-Bae;Chung, Soo-Bok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.98-106
    • /
    • 2007
  • This paper represent improved on-line turn off angle control schemes for switched reluctance motors based on current control. For the purpose of finding the optimal commutation switching angle point with improved controller, it is utilized turn on and turn off position calculation with inductance vs. current vs. not linkage analysis method. The goal of proposed paper is the maximization of the energy conversion per stroke and torque ripple reduction and obtaining approximately flat-topped current waveform. The proposed control scheme is demonstrated simulation and on a prototype experimental system.

Tracking System of Photovoltaic Generation Using DFC Controller (DFC 제어기를 이용한 태양광 발전의 추적시스템)

  • Jung, Byung-Jin;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.199-201
    • /
    • 2008
  • In this paper proposed the solar tracking system to use direct fuzzy control order to increase an output of the PV (Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a DFC(Direct Fuzzy Control)controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.