• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.029 seconds

PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill (PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

  • Lee, Choong-Sung;Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • 48-V ISG (Integrated Starter Generator) system has attracted attention to improve the fuel efficiency of ICE (Internal Combustion Engine) vehicle. One of the key components that significantly affects the cost and performance of the 48-V ISG system is the motor. In an ISG motor, the core and copper loss make the motor efficiency change because the motor has a broad driving operated range and more diverse driving modes compared with other motors. When designing an ISG motor, the selection of an electrical steel sheet is important, because the electrical steel sheet directly influences the efficiency of the motor. In this paper, the efficiency of the ISG motor, considering core loss and copper loss, is analyzed by testing different types of electrical steel sheets with respect to the driving speed range and mode. Using the results of a finite element method (FEM) analysis, a method to select the electrical steel sheet is proposed. This method considers the cost of the steel sheet and the efficiency according to driving mode frequency during the design process of the motor. A wound rotor synchronous machine (WRSM) was applied to the ISG motor in this study.

High Coercive Nd-Fe-B Sintered Magnets for High Temperature Application

  • Kim, D.H.;Kim, A.S.;Lim, T.H.;Jang, T.S.
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.27-30
    • /
    • 2009
  • Various sintered magnets containing $28{\sim}31\;wt%$ Nd and $0{\sim}7\;wt%$ Dy were evaluated for coercivity and irreversible flux loss as a preliminary study to develop highly-coercive, high-temperature magnets that can be applied for driving motors in a hybrid vehicle. The sintered magnets were prepared in sequence of strip casting, HD treatment, jet milling, magnetic field pressing, sintering and post-annealing. Increasing Dy content and adjusting post-annealing temperature monotonically increased coercivity of magnets from about 14 kOe to 30 kOe. A magnet containing 28 wt% Nd and 7 wt% Dy exhibits a $(BH)_{max}$+$_i{H_c}$ value of almost 64. This is very close to what the automobile industry considers as the minimum value (65) for a hybrid vehicle system. Moreover, irreversible flux loss of the magnet was about 3% at $200^{\circ}C$, which is well less than the allowable limit (5%) to a driving motor in hybrid vehicles.

Steady-State Current Characteristics for Squirrel Cage Induction Motor according to Design Variables of Rotor Bars using Time Difference Finite Element Analysis

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2017
  • Induction motors have wide applicability in many fields, both in industrial sectors and households, for their advantages of a high efficiency and robust structure. The introduction of power-source-containing harmonics into the induction motor winding lowers its efficiency and increases its temperature, greatly affecting its operation characteristics. In this study, we performed an electromagnetic field analysis using the time-difference finite-element method with the purpose of analyzing the steady-state current characteristics of an induction motor. Additionally, we calculated the steady-state current with a method combining an electromagnetic field equation and a circuit equation. In the electromagnetic field analysis, the nonlinearity was taken into account using the Newton-Raphson method, and a backward time-difference method was employed for the time derivative term. Then, we compared the steady-state current of the induction motor obtained by calculation with the experimentally measured values, thus validating the proposed algorithm. Furthermore, we analyzed the impacts of the shape and material of the rotor conductor bar of the induction motor on the steady-state current of the main winding.

A study on the accelerated life test model for life prediction of piston assemblies (피스톤 조립체의 수명예측을 위한 가속실험모델에 관한연구)

  • Lee, Yong-Bum;Kim, Hyoung-Eui;Song, Kyu-Joe;Kim, Tae-Suk
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.116-125
    • /
    • 2006
  • Piston assemblies, which are key components of hydraulic high pressure pumps & motors, are major failure products operating at high pressure and high speed, and the main failure mode is wearout of the shoe surface. To predict the actual life of piston assemblies. we require to find out the most sensitive parameters and establish related empirical formula. In this study, we analyzed the life of piston and shoe assemblies in accordance with variation of speed, pressure, and temperature to reduce the life test time, then analyzed the result of combined accelerated life test which is applied by high speed, speed pressure, and high temperature simultaneously, and finally developed combined accelerated life test model.

  • PDF

A Study on the Technique for Dynamic Firing Test of Propulsion System of Personal Surface to Air Missile (휴대용 대공 유도무기 추진시스템의 동적연소시험 기법 연구)

  • 김준엽;한태균;김인식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.19-28
    • /
    • 2000
  • In general the data such as thrust, pressure, temperature and combustion time are measured in developing the propulsion system of solid rocket motor through static firing test. But in the case of personal surface to air missile there are required a severe safety specifications in order to eliminate gunner hazard from the exhaust plume of motors. The safety requirements lead to the design of separation device and safety igniter device. The dynamic firing test for the designed two devices should be conducted under the flight environmental conditions to verify the requirements compliance. In this study the technique for dynamic firing test of propulsion system of personal surface to air missile is proposed and the method to design the dynamic test bench is also studied.

  • PDF

Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor (로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구)

  • 임석규;노태성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • A numerical analysis of unsteady motion in solid rocket motors with a nozzle has been conducted. The numerical formulation including modified $\kappa$-$\varepsilon$ turbulence model treats the complete conservation equation for the gas phase and the one-dimensional equations in the radial direction for the condensed phase. A fully coupled implicit scheme based on a dual time-stepping integration algorithm has been adopted to solve the governing equations. After obtaining a steady state solution, pulse and periodic oscillations of pressure are imposed at the head-end to simulate acoustic oscillations of a travelling-wave motion in the combustion chamber. Various steady and unsteady state features in the combustion chamber of a rocket motor has been analyzed as results of numerical calculations.

Development of All-in-one Case Insulation for the End-burning Solid Rocket Motor (End-burning 고체추진기관 적용 일체형 연소관 내열재 개발)

  • Kim, Jinyong;Lee, Sunjae;Choi, Jiyong;Park, Jaebeom;Lee, Sangyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1045-1047
    • /
    • 2017
  • In this study, we focused on development of the all-in-one case insulation for end-burning solid rocket motors. Material of insulation used unvulcanized rubber based on EPDM/kevlar. In case of boots insulation, preforms was made by using hot press molding, and then the tape was inserted between two preforms for all-in-one curing in the case. Finally bladder method was applied for curing of insulation.

  • PDF

Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets

  • Ucar, Huseyin;Parker, David S.;Nlebedim, I.C.;McCallum, R.W.;McCall, S.K.;Parans Paranthaman, M.
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • We present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in $Nd_2Fe_{14}B$ (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are largest, rather than uniformly throughout the bulk sample. A200 nm thick Dy film was sputtered onto a commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from $600-700^{\circ}C$. Magnets displayed enhanced coercivities after post-annealing and as much as a 5 % increase in the energy product, while requiring a total Dy content of 0.06 wt. % - a small fraction of that used in the commercial grade Dy-NdFeB magnets. By assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing which would potentially broaden the application space of these magnets in the traction motors of hybrid and pure electric vehicles, and wind generators.

Mechanical Properties of Ultra-High Molecular Weight Polyethylene Irradiated with Gamma Rays

  • Lee, Choon-Soo;Yoo, Seung-Hoo;Jho, Jae-Young;Park, Kuiwon;Hwang, Tae-Won
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.112-118
    • /
    • 2004
  • With the goal of enhancing the creep resistance of ultra-high molecular weight polyethylene (UHMWPE), we performed gamma irradiation and post-irradiation annealing at a low temperature, and investigated the crystalline structures and mechanical properties of the samples. Electron spin resonance spectra reveal that most of the residual radicals are stabilized by annealing at 100$^{\circ}C$ for 72 h under vacuum. Both the melting temperature and crystallinity increase after increasing the dose and by post-irradiation annealing. When irradiated with the same dose, the quenched sample having a higher amorphous fraction exhibits a lower swell ratio than does the slow-cooled sample. The measured tensile properties correlate well to the crystalline structure of the irradiated and annealed samples. For enhancing creep resistance, high crystallinity appears to be more critical than a high degree of crosslinking.