• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.042 seconds

The Development of a Steering Control Apparatus for the Two Wheel Driving Electric Vehicles (2륜구동 전기차량용 회전 제어 장치 개발)

  • Lim, Dong-gyun;Shon, Min-ho;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1115-1118
    • /
    • 2015
  • Two wheel type electric vehicles driving with the electric motors for guard are used increasingly at the airport and harbor place to move between narrow indoors. This type two wheel electric vehicles are powerd by batteries and using the steering control apparatus including multi sensors and handle operating device for forward and backward, rotating moving. At this research, we design sensor interfacing electronic control system use only the center of foot balance without the handle type steering apparatus. This design is for safety of drivers at one's cornering.

  • PDF

Analysis of Torque Characteristics And Modeling of 4Phase And 5Phase Hybrid Type Step Motors (4상과 5상 하이브리드형 스텝모터의 모델링 및 토크특성해석)

  • Choi, D.S.;Baek, S.H.;Kim, Y.;Yun, S.Y.;Chung, I.R.;Chang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.205-208
    • /
    • 1998
  • 영구자석형 하이브리드 스텝모터는 저가이며 개루프 제어 장치와 더불어 기계적인 제어시스템분야에서 광범위하게 이용되어 왔다. 서보모터 기술의 발달에 따라 영구자석형 스템모터는 고토크, 정밀제어의 응용분야에 있어 중요한 위치를 계속 점유하고 있다. 스텝모터는 외란으로서 작용하는 부하의 영향에 대해 안정한 견고성을 가지며, 적당한 속도와 양호한 분해능의 조합으로 신뢰도가 높고, 구조상 단순한 특징을 갖고 있다. 최근 저가의 개루프 위치제어 장치에 2상 스텝모터와 5상 스텝모터 중에서 어느 것이 더 적합한가에 대한 기술적인 주제가 주목할 어느 것이 더 적합한가에 대한 기술적인 주제가 주목할 만한 문제로 대두되고 있다. 이 두 기기의 구조는 거의 유사하며 같은 원리로 동작한다. 본 논문에서는 이 두 기기의 동작이 명백히 비교될 수 있는 기본적인 수준으로 돌아가서 두 모델을 고찰했다.

  • PDF

Design and Experimental Verification of an Interior Permanent Magnet Motor for High-speed Machines (고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 실험적 검증)

  • Kim, Sung-Il;Lee, Geun-Ho;Lee, Chang-Ha;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.306-310
    • /
    • 2010
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet synchronous motors have a number of merits such as high efficiency and high power density. Therefore, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted permanent magnet synchronous motor (SPMSM) of them is mainly used as a high-speed machine. However, the motor has a fatal flaw due to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the SPMSM. Thus, in this paper, an interior permanent magnet synchronous motor (IPMSM) is applied in order to drive the air-blower of FCEV instead of the SPMSM, and the experimental results of two models are compared to verify the capability of the IPMSM for high-speed applications.

A Study on the Design of Single Phase LSPM Considering the Irreversible Demagnetization of Permanent Magnet (불가역 감자를 고려한 단상 LSPM 설계에 관한 연구)

  • Jung, Dae-Sung;Go, Sung-Chul;Park, Hyun-June;Kwon, Sam-Young;Lee, Hyung-Woo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2186-2193
    • /
    • 2008
  • The growth on consideration of energy savings and motor efficiency has caused the LSPM(Line Start Permanent Magnet Motor) to be focused as a substitute for conventional induction motors. A Line start permanent magnet motor able to be driven at synchronous speed is designed based on a single phase induction motor in this paper. The single phase LSPM is identical to the induction motor except a permanent magnet is installed in the rotor. As the permanent magnet influences the characteristics of both transient state and steady state, a design considering both starting and synchronization conditions was used. In this paper, by adopting DOE, a single phase motor has been designed showing high power and smooth start. Also, optimal model is selected by weighting function. And the characteristics demagnetization are analyzed according to the variation of magnet shape. Finally, to verify the design results, a prototype was measured.

A New Design on the Parallel Load Type IGBT Brake Chopper System for KTX-1 High Speed Train (KTX-1 고속전철의 병렬부하형 IGBT 제동초퍼장치 설계에 관한 연구)

  • Youn, Cha-Joong;Noh, Myoung-Gyu;Lee, Eul-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.424-430
    • /
    • 2013
  • This paper presents a new design works for the braking chopper system which is included in the propulsion system of KTX high speed train. Due to the current fed type synchronous motors used in the propulsion system, some different behaviors are shown comparing to the voltage type other chopper systems. Specially this chopper system acts either braking controlling or regenerative power controlling system with a parallel resistive load in the propulsion system. In this paper, an improved simple high power IGBT brake chopper system has proposed which is able to be replaced with an existing complicated GTO chopper system. The analytical approaches to the parallel load type current chopper system and the propper snubber circuits calculation were explained in this paper to control new chopper system. In addition, the thermal resistance of the cooling system for power dissipation of IGBT modules was calculated also. Finally several PC simulations have been done to clarify its availability.

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

Application of the dead time compensation algorithm for a low-cost general purpose inverter (데드타임 보상 알고리즘의 범용 인버터 적용)

  • Jeong, S.J.;Kim, S.K.;Kim, S.H.;Shin, H.J.;Han, K.J.;Kim, M.C.;Lee, S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.8-10
    • /
    • 2005
  • In a general purpose inverter, a dead-time compensation strategy is very important for reducing torque ripples and acoustic noises of motors. However, in the case of small capacity inverter, the accurate dead-time compensation is hard to be obtained because a removal of the switching noise in a feedback current signal is difficult on condition of low-cost implementation. In this paper, the operation characteristics of the general purpose inverter applied the dead time compensation algorithm using an instantaneous back calculation of the phase angle of the current are presented.

  • PDF

Novel Method of ACO and Its Application to Rotor Position Estimation in a SRM under Normal and Faulty Conditions

  • Torkaman, Hossein;Afjei, Ebrahim;Babaee, Hossein;Yadegari, Peyman
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.856-863
    • /
    • 2011
  • In this paper a novel method of the Ant Colony Optimization algorithm for rotor position estimation in Switched Reluctance Motors is presented. The data provided by the initial assumptions is one of the important aspects used to solve the problems relative to an Ant Colony algorithm. Considering the nature of a real ant colony, it was found that the ants have no primary data for deducing which is the shortest path in their initial iteration. They also do not have the ability to see the food sources at a distance. According to this point of view, a novel method is presented in which the rotor pole position relative to the corresponding stator pole in a switched reluctance motor is estimated with high accuracy using the active and inactive phase parameters. This new method gives acceptable results such as a desirable convergence together with an optimized and stable response. To the best knowledge of the authors, such an analysis has not been carried out previously.

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

Design of an Adaptive Speed Regulator for a Surface-Mounted Permanent Magnet Synchronous Motor (표면부착형 영구자석 동기전동기의 적응속도제어기 설계)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.425-431
    • /
    • 2010
  • This paper proposes a new adaptive speed controller for the speed control of a surface-permanent magnet synchronous motor. The proposed adaptive controller is very insensitive to model parameter and load torque variations since it does not require any accurate information on the motor parameter and load torque values. Moreover, the stability of the proposed control system is analytically proven. To verify the effectiveness of the proposed adaptive speed controller, simulation and experimental results are shown under motor parameter and load torque variations. It is clearly validated that the proposed speed regulator can precisely control the speed of permanent magnet synchronous motors.