• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.039 seconds

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

The Development of Clutch Control for Manual Transmission Vehicle based on Stepping Motor (스탭핑 모터에 의한 수동변속기 차량의 클러치 제어 개발에 관한 연구)

  • Park, Young-Kug;Park, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3849-3855
    • /
    • 2012
  • This paper describes a control algorithm and test results of an automated manual transmission clutch actuated by a stepping motor. The control algorithm extracts driver's demand from CAN signals and decides the exact timing to engage or disengage the clutch based on the demand. A pulse signal is generated to drive the clutch and the travel of the clutch can be calculated by accumulating the pulse signal. An auto code generation method was introduced in implementing the control logic to the micro-processor of the prototype controller and a series of basic tests were carried out to validate its performance.

Core loss Calculation of a Permanent Magnetic Motor Considering Mechanical Stress (영구자석 전동기 철심의 기계적 응력을 고려한 철손 해석)

  • Kim, Ji-Hyun;Ha, Kyung-Ho;Kwon, Oh-Yeoul;Kim, Jae-Kwan;La, Min-Soo;Lee, Sun-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.851_852
    • /
    • 2009
  • Shrink fitting which is assembling process to fix stator core on the motor frame is widely used at the mass production line of motors because of cost and productivity. This process produces compressive stress on a stator core, which causes negative effect for example, core and copper losses on motor performance. Magnetic properties of electrical steel are effected by both compressive and tensile and thermal stresses. Electromagnetic field analysis is considered one of the effective process since one can predict motor performance including core loss precisely. This method can consider non linear magnetic property with magnetic saturation which is typical electrical steel behavior. However this method is strongly depended on non linear magnetic data, one may have different calculation result whether considering mechanical stress or not. This study describes magnetic field analysis of a motor considering mechanical stress from shrink fitting. Analysis results are compared with each stress-free and stressed condition.

  • PDF

Shape Design of IPMSM for HEV Traction Motor to Reduce Usage of Permanent Magnet and to Ensure Maximum Output Power (영구자석 사용량 저감과 최대출력 확보를 위한 HEV 구동용 IPMSM의 형상설계)

  • Jung, Jae-Woo;Lee, Tae-Guen;Lee, Jung-Jong;Lee, Geun-Ho;Hong, Jung-Pyo;Kim, Ki-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.607_608
    • /
    • 2009
  • 일반적으로 매입형 영구자석 동기전동기는 영구자석의 사용량이 많을수록 돌극비를 향상 시킬 수 있으므로 발생토크 중 릴럭턴스 토크의 비중을 키울 수 있다. 이는 토크 발생 시 입력전류를 저감시켜 동손이 감소하고 효율을 향상시키는 효과를 기대할 수 있다. 하지만 최근에 희토류계 영규자석의 가격 상승으로 인하여 영구자석 형 전동기 개발에 있어 제약이 따르는 상황이며 가격 경쟁력을 위하여 영구자석의 사용량을 저감시키는 노력을 기울이고 있다. 본 논문에서는 HEV 구동용 매입형 영구자석 동기전동기를 대상으로 영구자석 사용량 저감 설계에 대하여 다루고자 한다. 영구자석 사용량 저감은 영구자석의 두께를 변경시켜서 검토하였으며 실험을 통한 영구자석의 감자특성을 검토하여 최적의 두께를 결정하였다. 영구자석 두께 저감에 따라 감소한 최대출력 확보를 위하여 회전자의 형상설계를 기계적 구조해석과 병행하여 수행하였다. 최종으로 설계된 모델의 특성은 Prototype과 비교하여 성능만족 여부 및 영구자석 사용량 변화를 확인하였다.

  • PDF

A Novel Efficiency Optimization Control of SynRM Considering Iron Loss with Neural Network (신경회로망에 의한 철손을 고려한 SynRM의 새로운 효율 최적화 제어)

  • Kang, Sung-Joon;Ko, Jae-Sub;Choi, Jung-Sik;Baek, Jung-Woo;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.776_777
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using neural network(NN). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism fuzzy-neural networks(ALM-FNN) controller that is implemented using fuzzy control and neural networks. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Commercialization of Integrated DCU for the Platform Screen Door (승강장 스크린도어를 위한 통합형 제어기의 상품화)

  • Woo, Chun-Hee;Kim, Jin-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.110-113
    • /
    • 2011
  • Platform Screen Door, PSD, is a device that seeks to prevent accidents with regards to falling off the platform and getting trapped between the trains, achieve improvements on the cleanliness of the air, address the accessibility issue of the disabled and the elderly and provide fresher environment on the platform in general. This is achieved by preventing health hazards and accidents from occurring through installation of fixed and moving doors between rail, tram and subway platforms and the railway. Domestic firms have achieved domestic production to a large degree in various Control Units including the Overall Control Unit and RF devices through investments in technology. Despite this, full domestic production of the core of the PSD system, Door Control Unit, DCU, is not yet achieved, having to install PSDs in a relatively short period of time. Currently, controllers with DC motors are developed for installation or one is faced with having to import foreign produced controllers. In this research, the control unit prototype using the BLDC motor was domestically produced. The performance of the control unit was rigorously tested through installation on Eun-Ha Rail on Wol-Mi Island.

A Analysis of DC Control Circuit Transient and a Study of Auxiliary Relay Design Compatability in the Power Plant (발전소 직류 제어회로 과도현상 분석 및 보조계전기 선정 적합성 검토)

  • Seon, Hyun-Gyu;Hong, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1948_1949
    • /
    • 2009
  • All the power generating station require dc auxiliary power systems to operate those dc components that must be available if a loss of ac power occur. Some examples of such components are auxiliary motors, circuit breakers, relays and solenoids. The dc source may be one common battery for both power and control or two separate batteries; one for power and another for control. Typically, a dc auxiliary power system is designed as an ungrounded system, instead of grounded system, so that a low-resistance ground fault on one of its two polarities will not affect the operation of the system, thus increasing system reliability and continuity of service. A ground detector should provide a high polarity-to-ground resistance so that a single ground fault occurring on the system will not affect the operation of that system. Sensitive relays have been known to energize momentarily while the cable and capacitive charge to ground shifts[1]. A power station had experienced this kind of incident and performed root cause analysis based on PC based simulation program known as PSpice. This simulation showed adapted relays on the system energize momentarily and design criteria on this relay should be corrected.

  • PDF

Sensorless Algorithm of Brushless DC Motors Using Terminal Voltage of the One Phase (한상의 단자전압을 이용한 BLDC 전동기 센서리스 알고리즘)

  • Yoon, Yong-Ho;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • This paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor. Depending on the terminal voltage sensing rotor position, active filter is used for position information. This leads to a significant reduction in the component device of the sensorless circuit. Therefore this is a advantage for the cost saving and size reduction. With indirect sensing methods based on detection of the terminal voltage that require active filtering, the position information needs the six divider section by PLL circuit, the binary counter and johnson counter by the EPLD. Finally, this algorithm can estimate the rotor position information similar to Hall-sensor sticked the three-phase BLDC motor. As a result, the method described that it is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed. Experimental and simulation results are included to verify the proposed scheme.

Analytic Model of Four-switch Inverter-fed Driving System for Wye or Delta-connected Motor with Current Ripple Reduction Scheme

  • Lee, Dong-Myung;Jung, Jin-Woo;Heo, Seo Weon;Kim, Tae Heoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.109-116
    • /
    • 2016
  • This paper proposes an analytic model for four-switch inverter (FSI)-driven wye (Y) or delta (Δ)-connected motors with a current ripple reduction algorithm. FSIs employ four switches in controlling three-phase load instead of using six switches. They have split dc-link stage, and due to this inherent structure there exists the voltage difference between upper and lower capacitors, which results in distortion of the inverter output voltage. To study characteristics of FSIs, this paper presents an advanced simulation models of FSI-driven control system for 3-phase motor that can has a wire connection either Y or Δ. In addition, this paper introduces a current ripple reduction scheme that mitigates degradation of control performance due to the voltage difference between the dc-link capacitors. The validity of the proposed method and the analytic model is verified by simulations and experiments carried out with 1-HP induction machine with Y or Δ-connection

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.