• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.029 seconds

Pattern Classification of Partial Discharge Data

  • Kim Sung-Ho;Bae Geum-Dong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • PD(Partial discharges) are small electrical sparks that occur within the electric insulation of cables, transformers and windings on motors. PD analysis is a proactive diagnostic approach that uses PD measurements to evaluate the integrity of this equipment. Recently, several diagnostic algorithms for classifying the type of PD and locating the defect position have been developed. In this work, a new PD recognition system is proposed, which utilizes approximate coefficients of wavelet transform as a feature vector, furthermore, introduces bank of Elman networks to recognize the various PD phenomena. In order to verify the performance of the proposed scheme, it is applied to the simulated PD data.

Morphology of the Inclusion as the Al Deoxidation Product of Molten Iron (용융철에서 알루미늄 탈산 생성 개재물의 형상)

  • Lee, Bong-Ok;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.466-471
    • /
    • 1999
  • To investigate inclusions(oxides) which cause some trouble in the quality of the metal and a steel-making process, samples were manufactured. The molten irons were deoxidized using Al deoxidizer, and the morphology of the deoxidation products and the process of deoxidation were investigated by optical microscope, scanning electron microscope (SEM) and energy dispersive X-ray spectrometer(EDS). The reactions between Fe melt and Al deoxidizer formed deoxidation product, and those reaction may accelerates the reduction of oxide in Fe melt. According to the results of SEM analysis after deoxidizing treatment, it was found that deoxidation products had spherical cluster shape when 1% Al was added and dendritic shape with $2{\sim}3%$ A1 addition. The deoxidation products were globular, dendritic, polygonal(square) and cluster shape.

  • PDF

Development of a 6DOF Motion Platform for the Tilting Train Simulator (틸팅 차량용 시뮬레이터를 위한 6자유도 운동판 개발)

  • Kim Nam-Po;Song Young-Soo;Han Seong-Ho;Choi Kang-Yeon;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • This paper presents a development of 6DOF motion platform far a tilting train simulator. The tilting train simulator will be used to verify the tilting electronics and tilting control algorithm which are to be applied the Korean 180km/h tilting train. The tilting train simulator is composed of a 6-axis motion platform, a track generation system, a graphic user interface, and a visualization system with 1600mm-diameter dome screen. In this study, the 6DOF motion platform for a tilting train simulator has been designed and manufactured. The motion platform developed is a motion platform of Stewart type. The inverse kinematic analysis has been performed to determine the length of the links of the platform. Furthermore, the specification of the motors have been evaluated by the equation of motion of the platform.

A Study of Design Process of Magnetic Levitation Train (자기부상열차 차량시스템 설계과정에 관한 연구)

  • Chung Kyung-Ryul;Yoon Se-Kyun;Choi Yong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.563-572
    • /
    • 2004
  • Maglev is the vehicle which can run in levitated condition by the electro-magnets, and propelled by linear induction motors. Maglev system represents a typical example of large-scale multi-disciplinary system, consisting of subsystems such as train, electrical, hardware, electronics, control, information, communication, civil technology etc., that must be the subject under configuration, control and requirement management. Not only the requirements dictate the contracts with the suppliers but also become the basis of the development process, project execution, system integration, and testing. These requirements provide the basis specification of all development activities.

  • PDF

Development of IPM Propulsion System (Converter/Inverter) for AC Electric Vehicle (교류 전동차용 IPM 주 전력변환장치(Converter/Inverter) 개발)

  • Kim T.Y;Kno A.S;Hwang K.C;Choi J.M
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1437-1443
    • /
    • 2004
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM(Intelligent Power module) is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1.100kVA inverter with four 210kW traction motors.

  • PDF

Integrated Driver for the Full Rotation Using Six-axial Forces by the Induction Type of Axial-gap Motor (유도형 축방향 모터의 6축력 제어를 이용한 대회전 구현용 통합 구동기)

  • Jung Kwang-Suk;Lee Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.798-804
    • /
    • 2006
  • To overcome the limited relative uncertainty and work range of the existing planar stage and the bulk structure of the contact-less motor for rotation, the novel operating principle to realize the precise rotation is suggested. It uses the two-axial vector forces, normal force and thrust force, of three-induction type of axial motors located $120^{\circ}$ apart, resulting in the contact-free rotation of the mover. Firstly in this paper, the magnetic forces across the air gap are modeled and simulated under the various conditions. It clarifies the feasible range of the derived solution. And the algorithm compensating the strong cross couple between the forces and the control inputs; generally AC magnitude and slip frequency, is given to realize the independent control of six axes. Finally, for the successfully implemented system, the round test and the micro step test results are given.

Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가)

  • Yun, Jeong-Won;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.435-449
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and easy to maintain, while providing almost the same performance. A number of observers to estimate the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of a rail-mounted quayside crane was constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the constructed pilot crane. Experimental results are provided.

Robust Current Tracking Control of Switched Reluctance Motors (Switched Reluctance Motor의 견실한 전류추적 제어기 설계)

  • Kim, Chang-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.218-228
    • /
    • 2001
  • The switched reluctance motor(SRM) has been increasingly used in high-performance servo applications such as electric vehicles, aircraft, and direct-drive robots. The dynamic equations of SRMs are, however, highly nonlinear and this makes it difficult to control SRMs with high performance. In this paper, we propose a new robust current tracking controller for SAMs which can compensate the nonlinear characteristics of SRM(i.e., back-emf and inductance) completely and hence shows perfect tracking performance even with an arbitrary small current control loop gain. Furthermore, even in case that there exist some model uncertainties, our current controller guarantees that the stator currents can track the reference current commands with sufficiently small tracking errors. In order to justify our work, we present the tracking performance analysis and some simulation results.

  • PDF

Near-Minimum-Time Cornering Trajectory Planning and Control for Differential Wheeled Mobile Robots with Motor Actuation Voltage Constraint (차륜 이동 로봇의 모터 구동 전압 제한 조건을 고려한 코너링(cornering) 모션의 최소 시간 궤적 계획 및 제어)

  • Byeon, Yong-Jin;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.845-853
    • /
    • 2012
  • We propose time-optimal cornering motion trajectory planning and control algorithms for differential wheeled mobile robot with motor actuating voltage constraint, under piecewise constant control input condition. For time-optimal cornering trajectory generation, 1) we considered mobile robot's dynamics including actuator motors, 2) divided the cornering trajectory into one liner section, followed by two cornering section with angular acceleration and deceleration, and finally one liner section, and 3) formulated an efficient trajectory generation algorithm satisfying the bang-bang control principle. Also we proposed an efficient trajectory control algorithm and implemented with an X-bot to prove the performance.