• Title/Summary/Keyword: motors

Search Result 3,622, Processing Time 0.032 seconds

Design of Advanced Tele-operated Control System for Unmanned Vehicle

  • Park, Jae-Hong;Son, Young-Jin;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.915-919
    • /
    • 2005
  • It is materialized an unmanned vehicle system as a part of Intelligent Transportation System (ITS) which is a fundamental constituent for unmanned vehicle. Remote control system, monitoring system and remote operating system which are consisted of unmanned vehicle system. Network program by TCP/IP socket, and real-time control & operating controlled by servo-motors from a remote place, those are used to verify safety and stability of the unmanned vehicle system in this research. This unmanned vehicle is divided into two major sections which are an unmanned vehicle part and control station part. The server PC is installed on the unmanned vehicle and a client PC is installed at a remote place, which can control the u manned vehicle. In this research work, main theme is that we experimented and tested to check the speed and utilization of the wireless LAN communication.

  • PDF

A Robust PID Control Algorithm for a Servo Manipulator with Friction

  • Jin, Jae-Hyun;Park, Byung-Suk;Lee, Hyo-Jik;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2275-2278
    • /
    • 2005
  • In this paper, a control algorithm for a servo manipulator is focused on. A servo manipulator system has been developed for remotely handling radioactive materials in a hot cell. It is driven by servo motors. The torque from a servo motor is transferred through a reducer to the corresponding axis. The PID control algorithm is a simple and effective algorithm for such application. However, since friction degrades the algorithm's performance, friction has to be considered and compensated. The major aberrations are the positional tracking errors and the limit cycle. The authors have considered a switching term to a conventional PID algorithm to reduce the friction's effect. It has been tested by a hardware test.

  • PDF

Design and Control of a Wire-driven Haptic Device;HapticPen

  • Farahani, Hossein S.;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1662-1667
    • /
    • 2005
  • In this paper, analysis, design, control and prototype construction of a wearable wire-driven haptic interface called HapticPen is discussed. This device can be considered as a wire driven parallel mechanism which three wires are attached to a pen-tip. Wire tensions are provided utilizing three DC servo motors which are attached to a solid frame on the user's body. This device is designed as input as well as output device for a wearable PC. User can write letters or figures on a virtual plate in space. Pen-tip trajectory in space is calculated using motor encoders and force feedback resulting from contact between pen and virtual plate is provided for constraining the pen-tip motion onto the virtual plane that can be easily setup by arbitrary non-collinear three points in space. In this paper kinematic model, workspace analysis, application analysis, control and prototype construction of this device are presented. Preliminary experiments on handwriting in space show feasibility of the proposed device in wearable environments.

  • PDF

Development of a Biped Walking Robot

  • Kim, Yong-Sung;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2350-2355
    • /
    • 2005
  • In this paper, we introduce biped walking robot which can static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and 22 RC servo motors are used to actuate. Before made an active algorithm, we generated the motions of robot with the motion simulator which developed using by C language. The two dimension simulator is Based on the inverse kinematics and D-H transform. The simulator implements various motions as inputted the ankle's trajectory. Also we developed a simulator which is applied the principle of inverted pendulum to acquires the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle and pelvis when the robot lifts up its one side leg during the working. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which connected with laptop computer by serial cable.

  • PDF

Implementation of DC/DC Power Buck Converter Controlled by Stable PWM (안정된 PWM 제어 DC/DC 전력 강압 컨버터 구현)

  • Lho, Young-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.371-374
    • /
    • 2012
  • DC/DC switching power converters produce DC output voltages from different stable DC input sources regulated by a bi-polar transistor. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The voltage mode DC/DC converter is composed of a PWM (Pulse Width Modulation) controller, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an inductor, and capacitors, etc. PWM is applied to control and regulate the total output voltage. It is shown that the output of DC/DC converter depends on the variation of threshold voltage at MOSFET and the variation of pulse width. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by SPICE (Simulation Program with Integrated Circuit Emphasis) and experiments.

Development of a Personal Riding Robot Controlled by a Smartphone Based on Android OS (안드로이드 스마트폰 제어기반의 개인용 탑승로봇 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.592-598
    • /
    • 2013
  • In this paper, a small, lightweight smartphone-controlled riding robot is developed. Also, in this study, a smartphone with a jog shuttle mode for consideration of user convenience is proposed to make a small, lightweight riding robot. As well, a compass sensor is used to compensate for the mechanical characteristics of motors mounted on the riding robot. The riding robot is controlled by the interface of a drag-based jog shuttle in the smartphone, instead of a mechanical controller. For a personal riding robot, if the smartphone is used as a controller instead of a handle or a pole, it reduces its size, weight, and cost to a great extent. Thus, the riding robot can be used in indoor spaces such as offices for moving or a train or bus station and an airport for scouting, or hospital for disabilities. Experimental results show that the riding robot is easily and conveniently controlled by the proposed smartphone interface based on Android.

Characteristics Analysis of Short Flux Path Switched Reluctance Motor

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.38-45
    • /
    • 2012
  • A novel kind of switched reluctance motor (SRM) with short flux path is proposed in this paper. Phase excitation in the SRM gives short flux paths, hence reducing the magnetomotive force required to drive the machine, resulting in significant reduction of copper wire and core losses compared to the typical SRM with diametric circulation of magnetic flux. To verify the performance, the characteristics analysis of a double-stator SRM, a 6/5 SRM with C-core structure, and a 4/5 two-phase SRM, which all have short flux paths, and a comparison with conventional SR motors are executed. The comparison demonstrates that the proposed motor offers some advantages in terms of torque and efficiency.

Single-Pass Induction Motor Parameter Identification Method Taking Into Account Saturation and Rotor Parameter Variations

  • McKinnon, Douglas J.;Grantham, Colin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.3-9
    • /
    • 2012
  • The paper describes a novel technique for on line parameter identification of three-phase induction motors from a single, run up to speed test. Data is sampled during this test with the normal locked rotor and synchronous speed data captured on the way to reaching the motor's rated speed. Rotor parameter variations with frequency due to skin and proximity effects and other non-linear imperfections such as heating and main flux path saturation are taken into account. This method is ideal for determining and/or verifying parameters used in high performance drives.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Halbach Magnetic Circuit for Voice Coil Motor in Hard Disk Drives

  • Choi, Young-Man;Ahn, Da-Hoon;Gweon, Dae-Gab;Jeong, Jae-Hwa
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.143-147
    • /
    • 2010
  • Rotary-type voice coil motors are widely used as actuators in hard disk drives. The recent trend toward higher density and smaller form factors in data storage devices requires performance improvement of the voice coil motor. In this study, we introduce a Halbach magnet array to the voice coil motor in order to increase the force generation. The Halbach magnetic circuit outperforms the conventional magnetic circuit due to the confined magnetic flux. To investigate the performance of the Halbach magnetic circuit, we analyze air gap flux density with the various shapes and thickness of the magnets using 3-dimensional finite element analysis. Consequently the optimum shape of the Halbach magnetic circuit is proposed. Simulations and experimental results proved effectiveness of the proposed magnet array in the voice coil motor for a commercial hard disk drive.