• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.021 seconds

Monolith and Partition Schemes with LDA and Neural Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection

  • Ayhan Bulent;Chow Mo-Yuen;Song Myung-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Broken rotor bars in induction motors can be detected by monitoring any abnormality of the spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any misinterpretation of the signatures that are obscured by factors such as measurement noises and different load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide appropriate environments to develop such fault detection schemes because of their multi-input processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault detection with multiple signature processing, and demonstrates that multiple signature processing is more efficient than single signature processing.

Cogging Torque Minimization in Permanent Magnet Brushless DC Motors for High-Speed Application

  • Jang Seok-Myeong;Cho Han-Wook;You Dae-Joon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.146-153
    • /
    • 2005
  • In a permanent magnet brushless dc motor, cogging torque is produced by the magnetic attraction between the rotor mounted permanent magnets and the stator teeth. This always produces a pulsating torque ripple resulting in vibration and acoustic noise, which is detrimental to the motor performance. This paper deals with the analytical prediction of cogging torque and the various cogging torque minimization techniques as applied to a permanent magnet brushless dc motor.

Design of SPOKE Type BLDC Motor for Traction Application Considering Irreversible Demagnetization of Permanent Magnet

  • Hur Jin;Kang Gyu-Hong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.129-136
    • /
    • 2005
  • This paper presents a design strategy of SPOKE type BLDC motors considering an irreversible demagnetization of a permanent magnet (PM). So the irreversible demagnetization characteristic of the motor is analyzed by rotor structure. The instantaneous currents in either starting or lock rotor condition, which are calculated from the current dynamic analysis, are applied to the analysis of the irreversible demagnetization field by FEM. In irreversible demagnetization analysis by FEM, the variation of residual flux density in PM is analyzed using the non-linearity of magnetic core on B-H plan. The analysis results are compared to several rotor structures and used for optimize the rotor structure.

Coupled Field Circuit Analysis for Characteristic Comparison in Barrier Type Switched Reluctance Motor

  • Lee J.Y.;Lee G.H.;Hong J.P.;Hur J.;Kim Y.K.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.267-271
    • /
    • 2005
  • This paper deals with two kinds of novel shape switched reluctance motors (SRM) with magnetic barriers in order to improve operating performances of prototype. The magnetic barriers make rotor poles more saturated, and consequently inductance profiles are distorted. The changed inductance affects input current shape and eventually torque characteristics. In order to analyze the complicated flux pattern of the SRM with magnetic barriers and its terminal characteristics simultaneously, coupled field circuit modeling method is used. The finite element method is used to model the nonlinear magnetic field, and coupled to the circuit model of the SRM overall system. After experimental results are presented to prove the accuracy of the method, the several analysis results are compared, and the improved rotor shape is presented.

Stray Load Loss Analysis of Canned Induction Motor for Hermetic Compressor

  • Yamazaki Katsumi;Haruishi Yoshihisa
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.224-228
    • /
    • 2005
  • In this paper, we investigate the main components of stray load loss of induction motors for ammonia compressors. The variations of the losses at each part of the motor due to load are calculated by the combined 3-D-2D finite element method formulated by the mixed moving coordinate systems. The stray load loss is calculated from these results due the definition of IEEE standard-112. It is clarified that the core loss and the eddy current loss of the can increase due to load, which can be considered as the main part of the stray load loss.

Thermal Fatigue Life of Underfilled $\mu\textrm$ BGA Solder Joint

  • Kim, H.H.;Han, S.W.;Kim, H.I.;Choi, M.;Shin, Y.E.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • In this paper, the effect of underfill packages was investigated by numerical approach and experimental test. Reliability improvement was the main issue in the package technology. BGA, CSP and small-sized packages, have problems due to concentration of the stress in solder joints. One of the latest technologies to overcome is underfill encapsulant. Mainly, it is noticed the effect of the underfill in the packages. The predicted thermal fatigue lifes are performed by Coffin-Manson's equation with ANSYS (v.5.62). Also, thermal cycle test during from 218K to 423K was included. Finally we could find that underfill greatly reduce the concentration stress in solder joint, thus the fatigue life was improved than without underfill.

  • PDF

A Study on Real-time Control of Bead Height and Joint Tracking Using Laser Vision Sensor

  • Kim, H. K.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.30-37
    • /
    • 2004
  • There have been continuous efforts on automating welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, a vision system is constructed and using this, the 3 dimensional geometry of the bead is measured on-line. For the application as in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

  • PDF

Computer-Aided Vibration Signal Processing and Fault Monitoring System of Electrical-Fan Motors (컴퓨터를 이용한 선풍기모터의 진동신호처리 및 이상진단에 관한 연구)

  • Sin, Jung-Ho;Hwang, Gi-Hyeon;Choe, Yeong-Hyu;Park, Ju-Hyeok
    • 한국기계연구소 소보
    • /
    • s.17
    • /
    • pp.61-68
    • /
    • 1987
  • The main objective of this paper is to develop the computer-aided vibrational signal processing and monitoring system of rotating machinery. This system has an automatic data acquisition capability and analyze for machine fault diagnosis. By spectrum analysis, machine’s failure can be identified. The monitoring system enables diagnosis of the fault in rotating machinery. In this study, the conventional electrical fans are selected as a model case. The date processing and fault monitoring system proposed here can be applied to the automation of the inspection process in assembling motor-shaft systems. The automatic inspection can enhance the product quality and keep it stable. Since the proposed system is developed for personal computers, it might be cheap in cost and easy in installation.

  • PDF

Control of C-dump Converters fed from Switched Reluctance Motors on an Automotive Application

  • Yoon Yong-Ho;Kim Yuen-Chung;Song Sang-Hoon;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.120-128
    • /
    • 2005
  • This paper deals with the analysis of switched reluctance motor drives for different drive circuit topologies used in automobile. So we attempt to improve the weaknesses associated with the asymmetric bridge converter in the limited internal environment of automotive application. Two kinds of c-dump converters are tested in terms of dump capacitor voltage, speed response according to the variation of advance angle and efficiency for the radiator cooling-fan drive of an automobile. They enable more economical and efficient converter topology for automobile industries. This paper describes the performance characteristics of 12V-250W-3000rpm SRM drives for automotive application. Computer simulation and experiment results are then presented to verify the performance of the two kinds of c-dump converters.

A Novel Technique for Tuning PI-Controllers in Induction Motor Drive Systems for Electric Vehicle Applications

  • Elwer Ayman Saber
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.322-329
    • /
    • 2006
  • In the last decade, the increasing restrictions imposed on the exhaust emissions from internal combustion engines and traffic limitations have increased the development of electrical propulsion systems for automotive applications. The goal of electrical and hybrid vehicles is the reduction of global emissions, which in turn leads to a decrease in fuel resource exploitation. This paper presents a novel approach for control of Induction Motors (IM) using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Proportional Integral Controller (PI-Controller). The overall system is simulated under various operating conditions. The use of PSO as an optimization algorithm makes the drive robust and insensitive to load variation with faster dynamic response and higher accuracy. The system is tested under variable operating conditions. The simulation results show a positive dynamic response with fast recovery time.