• Title/Summary/Keyword: motor shaft

Search Result 368, Processing Time 0.028 seconds

A Study on The Straightness Improvement Method for Ensure Safety of Mobile Walker in Slope (경사로에서의 안정성 확보를 위한 Mobile Walker의 직진성 향상 기법에 관한 연구)

  • Lee, W.Y.;Lee, D.K.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.187-196
    • /
    • 2014
  • This paper suggests linearity enhancement algorithm to Ensure safety of Mobile Walker on Slope. Mobile Walker happens to get off track due to external forces from Walker's weight and the degree of the slope while slope driving. In order to compensate this, this research used the controller that estimates the external forces according to the slope of road surface and adjusts it to the motor output. Also, through comparisons between targeted rotational angular velocity which the user inputs and its velocity of the robot, algorithm was applied which applies a weight to each shaft. As a result of applying the proposed correction controller, it diverges in case of non-compensation experiments that deviates when moving, but it case of applying the ramp calibration algorithm, the deviation distance at max was within 10cm that it keeps safe driving, and change rate of deviation distance was also stabilized after 1m where no more changes occurred.

  • PDF

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure (복합 링크 구조 기반의 가변형 구형로봇 설계)

  • Kang, Hyeongseok;Joe, Seonggun;Lee, Dongkyu;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.26-33
    • /
    • 2017
  • We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.

A Study on the Durability of Manure Composting Facilities (축분 퇴비화 시설 내구성에 관한 조사연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Manure compost is a main product from animal wastes in Korea. Solid manure is usually treated by aerobic composting at manure composting facilities for land reinforcement. Agricultural use of manure compost as organic fertilizer resources, mainly manure compost, is now recommended in Korea. This study investigated the evaluation of durability about the manure composting machinery and structures which was controlled by aeration and periodic agitating. The questionnaire addressed three main topics as follows: operating practices, machinery and maintenance of the manure composting facilities are being operated. A total of the 22 manure composting facilities in an agricultural cooperative were surveyed. The results obtained in this survey were summarized as follow: The major causes of manure composting apparatus trouble were corrosion and wear, overloading and foreign matter etc. The highly trouble frequency of the agitator, packer and conveyor were chain, agitating blade and shaft, motor and screw vane, respectively. These analytical results can be used as basic information to establish the maintenance control methods and durability standard of manure composting facility.

Record and Replay Motion Implementation to Modular Toys using Two Potentiometers (두개의 전위차계를 이용한 모듈형 완구의 동작 저장 및 반복 재생 동작의 구현)

  • Lee, JinKyu;Lee, BoHee;Kim, JongTae;Park, JiYoup;Kong, JungShik
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • In order to realize the operation of the creative modular toy, it is required to record the motion and to read and repeat the motion. At this time, a control potentiometer is used to read the absolute angle of rotation of the toy motion output shaft. However, the unstable part of the sensing area of the potentiometer is present in a certain region, which may lead to instability of the motor control. In this paper, we propose an algorithm to find the absolute angle of one rotation by reading two stable potentiometers on one axis and reading each stable region. We also describe the correction algorithm that is needed to perform multiple rotations. The proposed method is applied to Topobo modular toys to record the operation and perform iterative operation. In addition, multi-turn operation is recorded and operated to suggest the usefulness of the proposed method. In the future, we will expand the functions of recording and playback through various actions.

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.

MORPHOLOGY OF THE TERMINAL ARBORS FROM THE MASSETERIC MUSCLE SPINDLE AFFERENTS IN THE TRIGEMINAL MOTOR NUCLEUS (삼차신경 운동핵에서 교근 근방추 구심성 신경섬유 종말지의 미세구조)

  • Lee, Kyung-Woo;Bae, Yong-Chul;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.3
    • /
    • pp.321-347
    • /
    • 1994
  • Muscle spindle afferents from masseter muscle were labelled by the intra-axonal HRP injection and were processed for light microscopic reconstruction. Regions containing terminal arbors scattered in the central portion of the masseteric motor neuron pool (type I a) and those restricted to 2-3 small portion of it (type II) were selected and processed for electronmicroscopic analysis with serial sections. The shape of the labelled boutons was dome or elongated shape. Scalloped or glomerulus shape with peripherial indentation containing pre or postsynaptic neuronal propiles, which is occasionally found in the trigeminal main sensory nucleus and spinal dorsal horn, was not observed. Both type Ia and type II boutons had pale axoplasm and contained clear, spherical vesicles of uniform size(dia : 49-52nm) and occasionally large dense cored vesicles(dia : 87-118nm). The synaptic vesicles were evenly distributed throughout the boutons although there was a slight tendency of vesicles to accumulate at the presynaptic site. The average of short and long diameter(short D. + long D./2) of type I a bouton was smaller than that of type II bouton. All the labelled boutons, which showed prominent postsynaptic density, large synaptic area and multiple synaptic contact, made asymmetrical synaptic contact with postsynaptic neuronal propiles. Most of the type Ia and type II boutons made synaptic contact with only one neuronal propile and boutons which shows synaptic contact or more neuronal propiles was not observed. Most of the type Ia boutons(87.2%) were presynaptic to the soma or proximal dendrite and a few remainder(12.8%) made synaptic contact with dendritic shaft or distal dendrite. In contrast, majority of type II boutons showed synaptic contact with dendritic shaft and remainder with soma or proximal dendrite. In conclusion, terminal boutons which participate in the excitatory monosynaptic jaw jerk reflex made synaptic contact with more proximal region of the neuron, and showed very simple synaptic connection, compared with those from the primary afferenst in the other region of the central nervous system such as spinal dorsal horn and trigeminal main sensory nucleus which assumed to be responsible for the mediating pain, tactile sensation, sensory processing or sensory discrimination.

  • PDF

A Study on Analysis and Design Improvement of Opening Angle of Duct Cap of Ice Dispenser for Refrigerator (냉장고 얼음 디스펜서 덕트 캡의 개방각도 해석 및 설계개선에 관한 연구)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.672-680
    • /
    • 2018
  • The opening angle of the duct cap assembly during the operation of a refrigerator ice dispenser was evaluated by transient structural analysis, and an improved design to maximize the opening angle was obtained. The opening angle of the existing design was found to be 78% of the upper limit. Several design modifications were proposed and analyzed to examine the effects of the design factors on the opening angle. As a result of the design modifications, the opening angle was improved by changing the lever material to a material with a high elastic modulus, moving the position of the support to the motor side, or increasing the lever shaft diameter. Considering the manufacturing cost of the new design, the design modification changing only the lever material was found to be the best because it does not require a change in the structure of the ice dispenser case. In conclusion, the opening angle can be improved by up to 95% of the upper limit value if the lever material is changed to an aluminum alloy. The methods and results presented in this study were found to be of great help in designing the duct cap assembly structure to facilitate the discharge of ice.

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.