• Title/Summary/Keyword: motor driving

Search Result 1,453, Processing Time 0.028 seconds

A study on the Chopper Control System of Electroic Vehicle (전기자동차의 쵸퍼제어 방식)

  • Chung, Y.T.;Han, K.H.;Kim, Y.J.;Lee, S.H.;Kim, D.G.;Lee, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1182-1184
    • /
    • 1992
  • In case of chopper control is used for the d.c motor In the electric vehicle(EV) in general step down chopper is used for the driving and the step-up chopper is used for the regeneration. Bilateral variable ratio chopper system(BVRCS) formed by parallel combination of upper two chopper methods step-down, step-up and step-up/down chopper operations by duty cycle, circuit element and driving condition. In this paper, BVRCS is proposed for the simulated and experimented control of d.c motor in the EV. By the result of simulation BVRCS represents same driving power compared to the step-down and excellent breaking power compared to the step-up chopper system because of the greater motor current.

  • PDF

Study on Maximum Adhesive Effort Estimation using Disturbance Observer (외란관측기를 이용한 최대 점착력 추정에 관한 연구)

  • Jun, K.Y.;Lee, S.H.;Oh, B.H.;Kang, S.U.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1120-1122
    • /
    • 2001
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

A Study of Adhesive Effect Estimation using Anti-slip Control Algorithm (Anti-slip 제어 알고리즘을 이용한 접착력 추정에 관한 연구)

  • Kim Gil-Dong;Ahn Tae-Ki;Lee Woo-Dong;Lee Ho-Yong;Park Seo-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.626-631
    • /
    • 2004
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Design of Deadbeat Controller for DC Motor Driving a Rotational Mechanical System (회전기계 계통을 가동시키는 직류전동기를 위한 데드비트저어기 설계)

  • Lee, Heung-Jae;Song, Ja-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.579-582
    • /
    • 1999
  • This paper presents a design method of deadbeat controller for DC motor driving a rotational system with gear. The results of sampling a continuous-data process does not guarantee that no ripples occur between the sampling instants in the continuous-data output, but the proposed deadbeat control system that consists of the integral controller and the full state observer, and zero order hold using in continuous systems, has many advantages of such as an output response without the ripple and reaching the steady state without error after a given sampling period and faster settling time than the optimal control system in the short sampling period. The results of case study through matlab simulation shown that the efficiency of the proposed controller for DC motor driving a rotational system with gear, is verified by comparing with optimal controller etc.

  • PDF

Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road (도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략)

  • Heo, Seulgi;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Development of Automatic Runner-Valve Actuator for The Filling Balance of Multi Cavity (복수 캐비리 충전 균형 조절을 위한 자동 런너 밸브 조절기 개발)

  • Lee, Y.J.;Lee, E.J.;Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.370-373
    • /
    • 2009
  • The runner-valve is an effective solution for the filling balance of the multi cavity molds. Automation of the runner-valve system is necessary for more efficient and accurate control of the filing balance. We designed an automatic runner-valve actuator for the automation and characterized the actuator by experiment. We obtained a linear relationship between motor-driving time and the height of the runner-valve. However, the motor-driving times for upward and downward directions were different due to the frictional characteristics of the actuators. Also we obtained the motor-driving times for backlashes of the 4 actuators. The results were used to formulate the relationship between the resin-arrival time and the flow rate change of the runner-valve with the theoretical equation that was derived in the previous research.

  • PDF

Three Phase Inverter System Utilizing Three Bi-directional Buck-Boost Converter (3개의 양방향 벅-부스트 컨버터를 이용한 3상 인버터 시스템)

  • Kim, Sung-Young;Nam, Kwang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.551-554
    • /
    • 2006
  • An inverter system which consists of three bi-directional buck-boost converters, is proposed for motor driving. Three phase sinusoidal output voltages can be generated by utilizing three buck-boost converters. The advantage of this scheme is that it does not require a separate DC-DC converter for motor driving, i.e. inverter function is combined into the three DC-DC converters. This topology is suitable for inverters for hybrid or fuel cell vehicles where DC link voltage is subject to change depending upon charging status or output power. So the proposed system is capable of driving motor at high speed. The converter system is controlled by PI controller and simulation results done by MATLAB SIMULINK are provided.Ҙ?⨀ሉȀ̀㘰々K䍄乍?ጊ츀Ѐ㔹〻Ԁ䭃䑎䴀

  • PDF

Topology Optimization of Linear Motor for Rope-less Elevator by Using Density Method and ON/OFF Method

  • Okamoto Yoshifumi;Takahashi Norio
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.233-237
    • /
    • 2005
  • The reduction of the ripple of driving force is especially required for the practical utilization of linear synchronous motor for rope-less elevator. In this paper, the magnetic region of the linear motor is optimized by using topology optimization techniques (density method and ON/OFF method) in order to reduce the ripple of driving force. The optimal results of both methods are compared, and useful information for the optimal design of linear motor is obtained.

DSP Implementation of a Sinusoidal Encoder using linear Hall Sensor (선형 홀센서를 이용한 정현파 엔코더의 DSP 구현)

  • Hwang, Jung-Ho;Chung, Chan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.298-302
    • /
    • 2012
  • The linear encoder used in the BLAC driving circuit consists usually analog type sensor, and need signal transform from analog sinusoidal to digital one for application in the PWM algorithm that is used to control motor current. When the motor is driven in low speed, it is required many operations and higher quality DSP to convert the hole sensor signal to digital one with enough resolution. In this paper, the another method to convert that signal with enough resolution without calculation of sine function is proposed. This is very simple and have high resolution even if the motor is driving in low speed. To verify the proposed method, BLAC motor is used, and it is proved that the motor is tracking well the reference step signal in the low speed as well as in the high one.