• Title/Summary/Keyword: motor control method

Search Result 2,633, Processing Time 0.037 seconds

Sensorless Vector Control of a Wound Induction Motor Using MRAS with On-Line Stator Resistance Tuning

  • Lee Jae-Hak;Kim Yoon-Ho;Lee Houng-Gyun;Woo Hyuk-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.462-465
    • /
    • 2001
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large scale resistor. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as Crain and Cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and in general, PI controller is used for control of current, torque, position, and speed for the wound induction motor drive system. However, the system may result in poor performance since sensors have to be used, which in turn is limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor drive. In conventional MRAS method, in low frequency, stator resistance variation can result in poor performance. Therefore, to overcome several shortages of the conventional MRAS caused by parameter variation and enhance robustness of the sensor less vector control, this paper investigates a MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor. The validity and effectiveness of the proposed method is verified through digital simulation.

  • PDF

A Study on Improvement of Structural Sliding Method Using AC Induction Motor Servo Control Device (AC유도전동기 서보제어장치를 이용한 구조물 슬라이딩공법)

  • Cho, Young-nam;Han, Jae-woong;Jang, Won-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.235-237
    • /
    • 2018
  • In spite of the superiority of the sliding method in the building construction field, the AC induction motor servo control device is used as the power control technology in the building construction field in order to improve the problems of the hydraulic power control method, thereby contributing to the precision control and the productivity improvement. Based on Induction Motor Servo Controller, we proposed the development of a mobile sliding method using a complex combination of PC and MITY (MS) Servo.

  • PDF

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Stepping motor controlling apparatus

  • Le, Ngoc Quy;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1858-1862
    • /
    • 2005
  • Stepping motor normally operates without feedback and may loss the synchronization. This problem can be prevented by using positional feedback. This paper introduces one method for closed loop control of stepping motor and a method for combining full-step control and micro-step control. This combination controlling apparatus can perform position control with high accuracy in a high speed, so that it will not suffer from vibration (or hunting) problem when stopping motor. Controlling apparatus contains a position counter block for detecting rotor position of stepping motor, a driving block for supplying current to windings of stepping motor, a control block for comparing output signal of position counter block with command position (desired position) and outputting current command signal based on deviation between current position and command position of rotor. To output current command signal, the control block refers to a sine wave data table. This table contains value of duty cycle of Pulse Width Modulation signal. As the second object of this paper, the process of building this data table is also presented.

  • PDF

Comparison of Dynamic Characteristics of the tine Start Permanent Magnet Motor and the Induction Motor

  • Yang, Byoung-Yull;Kwon, Byung-Il;Lee, Chul-Kyu;Woo, Kyung-Il;Kim, Byung-Taek
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.90-94
    • /
    • 2002
  • The line start permanent magnet (LSPM) motor has been developed facilitate to the design of the synchronous motor. The rotor of this motor is composed of interior permanent magnets and aluminum bars instead of rotor windings. It is difficult to predict the performance characteristics accurately, because many characteristics are produced by the aluminum rotor bars and the permanent magnets. Therefore, in this paper the dynamic characteristics of the LSPM motor are described and compared via the time-stepped finite element method with those of the cage-type induction motor to find the characteristics of the permanent magnets and the rotor bars in the LSPM motor.

Research on Development of a Wide Range Velocity Control Method of Small Size DC Motor for Portable Drug Delivery System

  • Lee, Dong-Joon;Lim, Yang-Ho;Kim, Jang-Hwan;Shin, Chan-Soo;Kim, Hee-Chan;Choi, Soo-Bong;Lee, Hong-Gyu
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.22-24
    • /
    • 1996
  • Small size DC motor control method for portable drug delivery system has been developed to be used for the actuator of insulins pump. The control method gives the controllabilities both in high speed(40-50 revolution per second(rps)) DC motor drive and also in low speed(0.5-1rps). In low speed mode DC motor is controlled to act like stepping motor and in high speed to optimize power consumption. To control both mode modified bang bang control is suggested. Using this method small size DC motor(spec.) speed is controlled from 0.2 rps to 50 rps. Experimental setup is developed using micro-processor(PIC16C73, Micro Chips co., USA), motor turns checking circuitry, small size DC motor for pager(SM1012, Samhong co., Korea) and gear box. Results from experiment meet need for vailable load condition which is require for portable drug delivery system.

  • PDF

Speed Sensorless Torque Monitoring of Induction Spindle Motor using Graphic programming (그래픽 프로그래밍 기법을 주축용 유도전동기의 속도 센서리스 토크감시)

  • 박진우;홍익준;권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.319-322
    • /
    • 1997
  • In vector control technique, stator currents of an induction motor are transformed to equivalent d-q currents in reference frame consist of d and q axis, each of which is coincide with flux and torque direction respectively. In this paper, the new algorithm is suggested where the stator current through an induction motor torque is monitored by using a vector control method where an additional equipment is not need. The G-programming is used to apply the suggested algorithm in the experiment and this is applied to an actual system to monitor the torque value of an induction motor on real time. To solve the vibration trouble of estimated torque caused from an unbalanced real rotating speed of an induction motor and measured rotating speed by suggesting the reconstructed in a method based on measurement current signal. This produced system testifies an accuracy of an induction motor through the experiment by comparing the reference value of the control method.

  • PDF

Analysis of the Transient Phenomena of a Squirrel-Cage Induction Motor by means of the Spiral Vector method and the Phase Segregation method (감쇠회전 벡터법과 상 분리법에 의한 농형 유도 전동기의 과도현상해석)

  • Jeong, Jong-Ho;Lee, Eun-Woong;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.644-646
    • /
    • 2000
  • An induction motor can be controlled like a separately excited do motor by field oriented control(or vector control). In vector control, Because the transformation of the stator's 3-phase current into two orthogonal current is required. the control scheme is complicated. But, Yamamura proposed a field acceleration method(FAM) without the phase transformation. FAM simplify an implementation control scheme for induction motors. In this paper, the analysis of transient phenomena of a squirrel-cage induction motor was achieved by the spiral vector method and the phase segregation method. It simplified control schemes more than those of vector control.

  • PDF

Improved Dual Closed-loops PWM Control of PM DC Servomotor - a Case Study of Undergraduate Education for Electrical Engineering

  • Cao, Hongtai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.374-378
    • /
    • 2014
  • PID control method usually has problems of overshoot and oscillation in high order control system, therefore, it is important to improve the control method so as to reduce the overshoot and oscillation. Based on MATLAB simulation, a permanent magnet (PM) DC servomotor control system is studied in this paper. The motor is modeled according to the universal motor theory, and with the help of the fourth order Ronge-Kutta method, its speed control is simulated and compared between two different dual closed-loops PWM control methods. This case study helps undergraduate students to better understand theories related to electrical engineering, such as electrical machinery, power electronics and control theory, as well as digital solution of state equations.

Design of neuro-fuzzy for robust control of induction motor (유도전동기의 강인 제어를 위한 뉴로-퍼지 설계)

  • 송윤재;강두영;김형권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF