• Title/Summary/Keyword: motor brake system

Search Result 104, Processing Time 0.035 seconds

Various Haptic Effects Based on Simultaneous Actuation of Motors and Brakes (모터와 브레이크의 동시구현에 기초한 다양한 햅틱효과의 제시)

  • Kwon Tae-Bum;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.602-608
    • /
    • 2005
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic devices. Motors can generate a torque in any direction, but they can make the system active during operation, thus leading to instability. Brakes can generate a torque only against their rotation, but they dissipate energy during operation, which makes the system intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. Among various haptic effects, contact with the virtual wall, representation of friction and representation of plastic deformation have been investigated extensively in this paper. It is shown that the hybrid haptic device is more suited to some applications than the motor-based haptic device.

Analytical Study of High Speed Railway Braking Disc-hub for Enhancement of Cooling Performance (냉각 성능 향상을 위한 고속철도 제동 디스크 허브의 해석 연구)

  • Lee, Yong-Woo;Kim, Jang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • This study aimed to improve the performance of the KTX (Korea Train Express) brake system. To develop a braking disc-hub for the high-speed rail, the model performance was analyzed by finite element analysis, and the analysis results were verified using the braking test results. In addition, heat transfer analysis, thermal stress analysis, natural frequency analysis, and static analysis were conducted to examine the mechanical performance of the braking system. By deriving the design factors and conducting parametric analyses according to the shape of the hub, this study derived the optimal specifications that could improve heat dissipation and reduce weight. The cooling efficiency and structural performance of the optimization model were improved during braking compared to the existing model. It is expected that the design verification will be carried out through analyses of the optimal specifications so that it can be used in the development of brakes in railway vehicles and motor vehicles.

A Study on Hybrid Electric Drive System for the AEGIS Destroyer (이지스 구축함용 HED 시스템에 관한 연구)

  • Jung, Sung Young;Oh, Jin Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.868-876
    • /
    • 2014
  • Arleigh Burke(DDG-51) and Sejong warship are AEGIS destroyer of US Navy and Korea Navy. These are designed to make more than 30knots by applying a COGAG(COmbined Gas turbine And Gas turbine) system. However, the gas turbine(LM2500) in this system has a low SFC (Specific Fuel Consumption) when the warship operated low speed. So, many kinds of companies are researching the HED(Hybrid Electric Drive) system to improve this problem. The purpose of this paper is to analyze the HED system and simulate by Sejong warship data. Serveral methods were used for that purpose. More specifically, the equipment modeling are employed for regression analysis by LabVIEW. As a result, it was found that the warship installed HED system could cut their fuel bills by as much as about 80,000,000won per year.

Development of In-wheel Actuator for Active Walking Aids Equipped with Torque Sensor for User Intention Recognition (토크센서 기반 사용자의도 파악이 가능한 보행보조기용 인휠 구동기 개발)

  • Lim, Seung-Hwan;Kim, Tae-Keun;Kim, Dong Yeop;Hwang, Jung-Hoon;Kim, Bong-Seok;Park, Chang Woo;Lee, Jae-Min;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1141-1146
    • /
    • 2014
  • As life expectancy becomes longer, reduction of human muscular strength threatens quality of human life. Many robotic devices have thus been developed to support and help human daily life. This paper deals with a new type of in-wheel actuator that can be effectively used for the robotic devices. BLDC motor, drive board, brake, ARS (Attribute Reference System), and torque sensor are combined in the single actuator module. The torque sensor is used to recognize human intention and the in-wheel actuator drives walking aids in our system. Its feasibility was tested with the active walking aid device equipped with the in-wheel actuator. Based on it, we designed an admittance filter algorithm to react on uphill and downhill drive. By adjusting mass, damping, and spring parameters in accordance with the ARS output, it provided convenient drive to the old on uphill and downhill walks.

Braking Force Estimation in Electric Parking Brake System using Rotation Number of the Motor (모터의 회전수를 이용한 전자제어식 주차 브레이크 시스템의 제동력 추정 기법)

  • Jang, Min-Seok;Lee, Young-Ok;Lee, Won-Goo;Lee, Choong Woo;Chung, Chung-Choo;Son, Young-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1525-1527
    • /
    • 2008
  • 기존 케이블 puller 방식의 EPB 시스템은 제동력을 측정하기 위하여 hall effect force 센서를 이용하고 있다. 그러나 본 논문에서는 hall effect force 센서를 사용하는 대신 모터의 속도를 이용하여 제동력이 가해지는 시점을 결정한 이후 모터의 회전수에 따른 제동력 추정 기법을 제안하고 실험을 통하여 검증한다.

  • PDF

Fault Tolerant Control of Sensor Fault of EPB System (EPB 시스템의 센서 고장 허용 제어 기법)

  • Lee, Won-Goo;Lee, Young-Ok;Jang, Min-Seok;Lee, Choong-Woo;Chung, Chung-Choo;Chung, Han-Byul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Integrated Chassis Control for the Driving Safety (주행 안전을 위한 통합 샤시 제어)

  • Cho, Wan-Ki;Yi, Kyong-Su;Chang, Nae-Hyuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.646-654
    • /
    • 2010
  • This paper describes an integrated chassis control for a maneuverability, a lateral stability and a rollover prevention of a vehicle by the using of the ESC and AFS. The integrated chassis control system consists of a supervisor, control algorithms and a coordinator. From the measured and estimation signals, the supervisor determines the vehicle driving situation about the lateral stability and rollover prevention. The control algorithms determine a desired yaw moment for lateral stability and a desired longitudinal force for the rollover prevention. In order to apply the control inputs, the coordinator determines a brake and active front steering inputs optimally based on the current status of the subject vehicle. To improve the reliability and to reduce the operating load of the proposed control algorithms, a multi-core ECU platform is used in this system. For the evaluation of this system, a closed loop simulations with driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy.

An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability (차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발)

  • Her, Hyundong;Yi, Kyongsu;Suh, Jeeyoon;Kim, Chongkap
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

Robust Model Based Fault Detection of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 모델기반 고장검출 방법)

  • Moon, Byoung-Joon;Park, Chong-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.26-30
    • /
    • 2009
  • In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).