• Title/Summary/Keyword: motor/generator

Search Result 453, Processing Time 0.027 seconds

Multi-level Modeling and Simulation for Sustainable Energy (대체 에너지의 다중레벨 모델링과 시뮬레이션)

  • van Duijsen, P.J.;Oh, Yong-Taek
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Modeling and simulation for Green Energy depends largely on the type of system under investigation. The topics are very wide ranging from semiconductor physics (solar), electrical motor/generator (wind turbines), power electronics (grid connections) to typical control strategies. To correctly model these technologies requires a broad set of models and various simulation techniques. To further refine or detail the simulation the modeling has to be performed on a specific level, being system, circuit or component level. Combinations of several levels allows gradually improving the validity of the overall model against available parameters and model equations.

  • PDF

A Case Study of On-line PD Measuring System on the Stator Winding for High Voltage Rotating Machine (고전압회전기 고정자권선 운전중 부분방전진단시스템의 현장적용사례 연구)

  • Oh, Bong-Keun;Kang, Dong-Sik;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.109-109
    • /
    • 2010
  • On-line partial discharge(PD) diagnostic system is the most prominent systems to diagnose insulation condition for the high voltage rotating machines. Partial discharge measuring system(PDMS) series with ceramic coupler(PD detecting sensor) installed hydro generator and high voltage motor have been measured the PD data for many years. The trend of PD magnitude in the on-line PD system increased for some machines. These machines showed a same result in the conventional off-line PD test and PD magnitude decreased after stator winding insulation cleaning. This case study show that PDMS has been proved to be good results by comparing PD magnitude with on-line and off-line PD test and it is important to plan the maintenance project for the hydro generator stator winding because PD value was decreased after insulation cleaning.

  • PDF

Development of Oxygen Generator for Vehicle with Two Head Vaccum Pump (Two Head Vacuum Pump를 이용한 차랑용 산소 발생기 개발)

  • Joo, Nam-Kyu;Baek, Gyu-Youl;Cha, Jin-Souk;Lee, Jun-Bae;Kim, Nam-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.114-119
    • /
    • 2004
  • An oxyge generator, which is applied to a particular space such as automobile, must consider compactness and lightweight as well as problems caused by noise, vibration and heat dissipation. For these matters, a BLDC motor was adopted to reduce heat while a bed using synthetic zeolite NaX made it possible to generate high-density oxygen with relatively small size. Moreover, owing to the characteristic of synthetic zeolite Nax, a two-head vacuum pump was designed to desorb nitrogen without additional pump unit.

Implementation of Feedback Controller on the Servo System (교류서보계의 궤환제어 구현)

  • Chun, Sam-Suk;Park, Chan-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.719-720
    • /
    • 2006
  • In the mechanical system, optimization of motion control is very essential in the aspect of automation technique progress. In the servo system, the function of controller is very important but most of the controllers have played only the role of pulse generator because the controller with main function is very expensive. In this thesis, the system was composed of PC, commonly used driver AC servo motor and a produced control board. The PC transmit a gain, a locus data to a driver and controller. At the same time, it converts imformation from the controller and convert them into data and offer an output with graph. The role of a controller is to trasmit a locus data to a driver and counting the pulse on the phase of an encoder to the PC. We have performed the experiment in order to confirm with variable PID parameter capable of the optimization of gain tuning with the counting of feedback control sensor signal with regard to the external interface into the system, such as torque. Based on the experiment result, we have confirmed as follows: First, it was confirmed that we could easily input control factors P.I Gain, constant $K_P,\;K_I$ into PC. Second, not only pulse generator function was possible, but with this pulse it was also possible to count using software with PIC chip. And third, using the multi-purpose PIC micro chip, simple operation and the formation of small size AC Servo Controller was possible.

  • PDF

Development of Speed Estimation Algorithm for Low-effecting of T.G Ripple by Using Generalized Observation Technique (일반화 관측기법을 이용한 T.G 리플의 영향력 감소를 위한 속도추정 알고리즘)

  • Kim, H.S.;Lee, C.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.55-59
    • /
    • 1999
  • Generally, T.G(Tacho-generator, Tachometer) sensor is used widely for sensing the angular velocity in rotary machine. By limitation of T.G sensor's structure, the sensed angular velocity include a periodic noise, and the noise is called "ripple" as an electrical term. To reduce the effecting of the ripple, many kinds of filters are designed and installed, but there is necessary a trade off between response time and adapted frequency band. In this paper, we propose a generalized observer to estimate an angular velocity from the output signal of T.G sensor. The generalized observer is proposed firstly for continue systems, and it is applied to DC servo motor with T.G sensor. For simulation, we measure T.G signals at 60, 400, 570 rpm respectively, and analysis those to obtain the resonance frequency of ripple by FFT method. To verify the effectiveness of the proposed algorithm, we compare the results with those of a RC low frequency band filter.

  • PDF

Current Measurement and Velocity Spatial Distribution of Deep Ocean Engineering Basin

  • Jung, Sung-Jun;Jung, Jae-Sang;Lee, Yong-Guk;Park, Byeong-Won;Hwang, Sung-Chul;Park, In-Bo;Kim, Jin-Ha;Park, Il-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.150-160
    • /
    • 2021
  • To ensure the international competitiveness of the domestic offshore plant industry, a consensus has been formed regarding the requirement for large offshore basins for performing offshore plant performance verification. Accordingly, the Korea Research Institute of Ships & Ocean Engineering has built the world's largest deep ocean engineering basin (DOEB). The purpose of this study is to evaluate the characteristics of velocity distribution under various conditions of the DOEB. An independent measuring jig is designed and manufactured to measure the current velocities of many locations within a short time. The measurement jig is a 15-m-high triangular-truss structure, and the measurement sensors can move 15 m vertically through an electric motor-wire device. The current speed is measured under various impeller revolutions per minute and locations of the DOEB using the jig. The spatial distribution characteristics of the current velocity in the DOEB and the performance of the current generator are analyzed. The maximum speed is 0.56 m/s in the center of the DOEB water surface, thereby confirming sufficient current velocity distribution uniformity for model testing.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation -Part I : Theoretical Performance Analysis-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This paper deals with the nodal admittance approach steady-state frequency domain analysis of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover as the wind turbine. The steady-state performance analysis of this power conditioner designed for the renewable energy is based on the principle of equating the input mechanical power of the three-phase SEIG to the output mechanical power of the variable speed prime mover mentioned above. Us-ing the approximate frequency domain based equivalent circuit of the three-phase SEIG. The main features of the present algorithm of the steady-state performance analysis of the three-phase SEIG treated here are that the variable speed prime mover characteristics are included in the approximate equivalent circuit of the three-phase SEIG under the condition of the speed changes of the prime mover without complex computations processes. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by variable speed prime movers such as the wind turbine(WT) employing the static VAR compensator(SVC) circuit composed of the thyristor phase controlled reactor(TCR) and the thyristor switched capacitor(TSC) controlled by the PI controller is designed and considered for wind-turbine driving power conditioner.

Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine (레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발)

  • Ham, Yun-Young;Lee, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.529-535
    • /
    • 2018
  • The range extender vehicle runs on a mechanism that allows the small power generation engine to start in the most efficient specific operating range to charge the battery and extend the mileage. In this study, we developed a step motor type intake air supply system that replaces existing throttle body system to develop a simple low cost control logic system. The system was applied to the existing base engine, and in order to improve the performance by increasing the amount of intake air, the effect of changing the length of the intake and exhaust manifold was experimentally examined. As a result, the Type B intake air control actuator operated by one step motor showed higher performance than the Type A in all the operation region, but the performance was lower than that of the base engine due to the increase of flow resistance. To improve this, it was confirmed that the engine performance was improved at both speeds of 2200rpm and 4300rpm when the 140mm adapter was installed in the intake manifold and when the newly designed 70mm exhaust manifold was applied. Through this process, high - precision operation control was realized by connecting the generator load to the optimized engine for the range extender electric vehicle. Experimental results showed that the speed change rate was within ${\pm}2.5%$ at 2200rpm in 1st stage and 4300rpm in 2nd stage and the speed follow-up result of 610 rpm/s was obtained when the speed was increased from 2200rpm to 4300rpm.

A magnetic bearing capacity due to unbalance mass in a flywheel energy storage system (자기베어링을 이용한 플라이휠 에너지 저장 시스템의 불평형 질량에 의한 베어링의 동적 부하 용량)

  • Kim, Bong-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Kim, Hee-Soo;Lee, Doo-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.176-181
    • /
    • 2009
  • In this article, excitation forces due to unbalance mass in a flywheel energy storage system will be discussed, which mainly consists of a composite flywheel and active magnetic bearings and a motor/generator. Unbalance mass causes moments as well as centrifugal forces to the center of the flywheel when the flywheel rotates. The moment excites the flywheel to revolve in the shape of conical revolution and in real operation, the flywheel shows an aspect that conical revolution is a main mode when system failure occurs. Although there are several excitation sources to the flywheel including unbalance mass, an excitation from motor and control issues of the magnetic bearings, we could infer unbalance mass is the main cause of the failure from a comparison between a composite flywheel and a steel flywheel in the same condition. In this of view, excitation forces and moments induced by unbalance mass should be carefully considered in dynamics of the flywheel so that the energy storage system can be operated in more stable conditions.

  • PDF

Analysis on Partial Discharge Fault Signals of PRPD for High Voltage Motor Stator Winding (고압전동기 고정자 권선의 PRPD 부분방전 결함신호 해석)

  • Park Jae-Jun;Lee Sung-Young;Mun Dae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.942-946
    • /
    • 2006
  • We simulated insulation defects of stator winding wire on high voltage generator by 5 types. 4 types have one discharge source and other one has multi discharge source by simulation. For accurate decision, measurements used to PRPD pattern to occurred partial discharge source of various types. In this research, when PRPD pattern carried out or analyzed pattern recognition of discharge source, it used to powerful tools. In this result, PRPD Pattern defined to have single discharge source of 4 types by insulation defect. When insulation defect simulated, all the defected winding have not the same result. Errors for a little different can make mistakes from a subtle distinction. The difference between internal and void discharge have magnitude of pulse amplitude of inner discharge bigger than void discharge and have a shape of bisymmetry. But void discharge has a shape of bisymmetry against maximum value on polarity respectively. In cases of slot and surface discharge, we confirmed to show similar results those other researchers. In case of multi-discharge, as a result of we could classify not perfect match with occurred patterns in single discharge eachother. In the future, we will have to recognize and classify with results of multi-discharge.