• 제목/요약/키워드: motor/generator

검색결과 454건 처리시간 0.027초

계자전류 조합에 따른 ISG용 권선형 동기전동기의 설계 및 특성분석 (Design and Characteristic Analysis of Wound Rotor Synchronous Motor for ISG according to Field Current Combination)

  • 권성준;이동수;정상용
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1228-1233
    • /
    • 2013
  • In this paper, design of Wound Rotor Synchronous Motor(WRSM) for Integrated Starter and Generator(ISG) is performed based on Finite Element Analysis(FEA). WRSM can control not only magnitude and phase of armature current, but also field current. Thus, various control methods can be considered. Since driving characteristic of WRSM depends greatly on the control method, characteristic analysis accoding to possible driving current combination is reguired. Especially in high speed region, the control method that reduces unnecessary d-axis current by reducing field current is possible, which is similar to field weakening control. By the current combination reducing field and d-axis current, the design minimizing copper loss to increase efficiency on identical driving point is possible. In this paper, high efficient WRSM is designed applying the current combination which can minimize copper loss on each driving point.

비동기모터 기동시 Matlab을 이용한 스위칭시간 계산의 모델링 및 시뮬레이션 (Modeling And Simulation of the Switching Time Calculation When Starts Asynchronous Motors using Matlab Software)

  • 배철오;브엉득푹
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 후기공동학술대회 논문집
    • /
    • pp.73-73
    • /
    • 2011
  • In fact, asynchronous motors are used widely. Asynchronous motors which have large power (compared to the source supplies) is needed to start them in various methods. The theory of application reduced voltage to motor's stator or variable resistor fed rotor for the purpose of altering the motor's torque and power consumption characteristics is an idea that has existed for many years. These concepts have flourished mainly due to the need to limit torque and limited generator/power distribution capabilities. However, how can know exactly the time of switching steps with different types of motors as well as load characteristics is very difficult. This paper focuses on the design and development mathematical models of motor[1][2], load, ACB, asynchronous machine and then is implemented in SIMULINK in order to calculate this time, special on ships where power generation station is limited. The simulation results are both compared and discussed in detail so that it can apply to conclude the most suitable and applicable starting time for new system with various motors and load.

  • PDF

고압전동기 모델 코일에서 부분방전 분석 (Analysis of Partial Discharge in High Voltage Motor Model Coils)

  • 김희동
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권4호
    • /
    • pp.178-182
    • /
    • 2006
  • Five model coils of 6.6 kV motor were manufactured with several defects. These stator coils have artificial defects such as void of groundwall insulation, removal of semi-conductive coating and damage of strand insulation. Epoxy-mica coupler(80 pF) was connected to five model coil terminals. The voltage applied to the coils was 3.81 kV, 4.76 kV, 6.0 kV and 6.6 kV, respectively. Partial discharge(PD) tests performed in the laboratory and shield room. Digital PD detector(PDD) and turbine generator analyzer(TGA) were used to measure PD activity. TGA summarizes each plot with two quantities such as the normalized quantity number(NQN) and the peak PD magnitude(Qm). The PD levels in pC were measured with PDD. PD patterns of model coils were indicated the internal and slot discharges. PD patterns are consistent with the result of measurement using PDD and TGA instruments. AC breakdown test was performed on five model coils in order to confirm the result of PD measurements. All the failures were located in a line-end coil at the exit from the core slot.

유도 전도기용 순시전류 추종형 PWM 인버터에 관한 연구 (A Strategy on Adaptive Current PWM Inverter for Induction Motor)

  • 박철우;박성준;권순재;김광태
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제6권2호
    • /
    • pp.56-61
    • /
    • 1992
  • 유도 전동기의 일정자속 벡터제어에서 유도전동기의 속도를 별도의 속도검출장치가 없이, 전동기의 속도를 1차측 전압과 전류 및 전동기정수에 의하여 추정하는 방법을 제시하고 전류추종형 PWM인 버터에 의하여 구동 시스템을 구성하였다. 모든 연산 및 제어회로를 마이크로프로세서에 의하여 보다 간단하게 실현시켜 유도전동기의 가변속 구동특성을 컴퓨터 시뮬레이션과 실험에 의하여 조사하였다. 속도검출장치를 이용한 경우와 연산회로에 의하여 계산된 경우의 입력 전류파형상의 차이를 조사한 결과 미소한 리플성분을 제외하고는 잘 일치하였으며, 기동 및 가감속시의 속도추종특성도 시뮬레이션의 결과와 함게 양호하게 얻어졌다.

  • PDF

고압회전기 고정자 권선의 부분방전 측정 (Partial Discharge Measurements of High Voltage Rotating Machine Stator Windings)

  • 김희동;이영준;공태식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1828-1830
    • /
    • 2003
  • Partial discharge(PD) tests are used to evaluate the insulation condition of stator windings in two 4.16kV and three 6.6kV motors. These tests were conducted using a conventional partial discharge detector(PDD) and turbine generator analyzer(TGA). Off-line PD measurements were performed on five high voltage motors. PD magnitudes ranged from 1000 pC to 5400 pC at the normal line-to-ground voltage. Five high voltage motors have been equipped with 80pF epoxy-mica coupler on the motor terminal box. The PD pulse from sensors were measured with the TGA instrument. TGA summarizes each plot with two Quantities such as the peak PD magnitude(Qm) and the total PD activity(NQN). The defect mechanisms of high voltage motor can be associated with PD patterns such as internal, slot and conductor surface discharges. The PDD and TGA test results of No. 4 motor showed that internal discharge was detected in voids of the groundwall insulation.

  • PDF

500 W 급 마이크로 가스터빈 제너레이터용 환형 연소기의 특성에 관한 연구 (Study on the Characteristics of an Annular Combustor for a 500 W Class Micro Gas Turbine Generator)

  • 도규형;김태훈;한용식;김명배;최병일
    • 한국연소학회지
    • /
    • 제19권4호
    • /
    • pp.14-20
    • /
    • 2014
  • In the present study, an annular combustor for a 500 W class micro gas turbine generator was designed and its characteristics were investigated by using both numerical and experimental methods. For this purpose, geometrical configurations of the annular combustor were determined in the aspect of the aerodynamic and chemical consideration. Also, fluid flow and pressure drop characteristics in the combustor were numerically studied by using commercial tool, FLUENT. Based on the numerical results, the diameter and the angle of air admission holes in the primary zone were chosen to be 2.5 mm and $30^{\circ}$, respectively. Finally, an integrated test unit, which consisted of a compressor, combustor, turbine, and motor/generator, was developed in order to measure the combustor efficiency. As the temperature difference between the combustor inlet and the turbine inlet or the air mass flow rate increased, the combustor efficiency increased and it was over 90% when the air mass flow rate was larger than 7.30 g/s. It was shown that the annular combustor developed in this study met the design requirement for a 500 W class micro gas turbine generator.

유체마찰에너지를 이용한 풍력열발생조의 성능 분석 (Performance Analysis of the Wind Power Heat Generation Drum Using Fluid Frictional Energy)

  • Kim, Yeong-Jung;Yu, Yeong-Seon;Gang, Geum-Chun;Baek, Lee;Yun, Jin-Ha;Lee, Geon-Jung
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.263-270
    • /
    • 2001
  • This study was conducted in order to develop wind-water heating system where frictional heat is creased between the rotor and working fluid when they are rotating in the cylindrical heat generator. The wind-water heating system is composed of rotor, stator, working fluid, motor, inverter and heat generation tank. Instead of wind turbine, we have used an electrical motor of 30㎾ to rotate the rotor in this system. Two working fluids and six levels of rotor rpm were tested to quantify heat amounts generated by the system. Generally, as motor rpm goes up heat amount increases that we have expected. At the same rpm, viscous fluid showed up better performance than the water, generating more heat by 10$\^{C}$ difference. The greatest heat amount of 31,500kJ/h was obtained when the system constantly drained out the hot water of at the flow rate of 500ℓ/h. Power consumption rate of the motor was measured by thee phase electric power meter where the largest power consumption rate was 14㎾ when motor rpm was 600 and gained heat was 31,500kJ/h, that indicated total thermal efficiency of the wind power water heating system was 62%.

  • PDF

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

MATLAB_SIMULINK를 이용한 풍력 발전 시뮬레이터 개발 (Development of wind power simulator using MATLAB SIMULINK)

  • 박원현;미흐렛 게브레스랄새;감지현;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.665-667
    • /
    • 2016
  • 최근 화석연료의 고갈 및 환경문제로 인해 신재생 에너지에 대한 관심이 해마다 증가하고 있다. 신재생에너지는 깨끗하고 재사용이 가능한 에너지원으로 풍력과 태양광을 이용한 방법이 대표적이다. 이들 중 풍력 발전시스템은 자연의 바람을 이용하여 바람의 운동에너지를 전기에너지로 변환하는 방식이다. 기존에는 풍력 발전시스템을 구현하여 풍동실험을 하기 위해 실제 풍력과 유사한 환경을 구성하여 풍동실험을 하였다. 하지만, 이러한 풍동실험을 구성하기에는 비용이 커지는 문제가 발생한다. 본 논문에서는 이러한 풍동실험을 모터와 발전기를 이용한 테스트 베드를 구성하여 실험할 때 실제 풍동실험에서 발전기의 특성을 고려하여 모터를 제어함으로서 풍동실험과 유사한 결과를 얻고자한다.

  • PDF

전동 하이브리드 무인 드론의 동력 계통 최적화 (Power System Optimization for Electric Hybrid Unmanned Drone)

  • 박정환;류희경;이학태
    • 한국항공우주학회지
    • /
    • 제47권4호
    • /
    • pp.300-308
    • /
    • 2019
  • 드론이 농업 및 산업 운송 분야에 이용되기 위해서는 큰 탑재 하중과 긴 운용시간이 필요하다. 현재의 배터리 기술로는 탑재 하중과 체공 시간을 늘리는 데에 한계가 있고, 특히 현장에서 지속적인 운용이 필요할 때에 배터리의 충전 또는 교환이 번거로운 문제가 있다. 본 연구에서는 내연기관과 발전기, 그리고 배터리와 전기모터가 결합된 복합적인 추진기관을 사용하는 드론의 동력시스템을 최적화하는 과정을 제시한다. 운반과 운용의 제약을 고려하여 이륙중량 200kg 급의 기체를 선정하였다. 내연기관과 직접 연결된 2개의 주 로터가 기체 중량의 대부분을 담당하고, 내연기관으로 구동되는 발전기의 전력을 사용하는 4개의 모터가 자세제어를 담당하도록 시스템을 구성하였다. 드론의 에너지 흐름을 파악하여, 기존의 상용품 중 최적의 모터와 프로펠러를 선정하는 기법을 제시하고, 내연기관의 측정 데이터를 이용하여 최적의 운용 점과 기어비를 도출하는 기법을 제시한다.