• 제목/요약/키워드: motion-ride

검색결과 81건 처리시간 0.026초

중형 트럭의 피칭 운동 저감을 위한 현가계의 설계 변수에 관한 해석적 연구 (An Analytical Study of Suspension Design Parameters in order to Reduce the Pitching Motion of Medium Truck)

  • 이희범;이기호;김태식;손한규;안찬우
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.154-160
    • /
    • 1998
  • Ride quality of medium truck became a very important factor in the suspension design, to the demand of more comfortable ride of passengers. This study describes how to determine and evaluate design parameters related to the chassis suspension system with time and frequency analysis. The spring stiffness and damping force of the chassis suspension system were obtained by observing the vertical acceleration PSD. The simulation was carried out on various road profiles, which was suggested by ISO. The pitching motion of the medium size truck was observed to improve the ride quality. A computer simulated truck model was constructed using DADS, a commercial dynamic analysis software, in order to simulate the truck motions. From the analyzed process of suspension parameters, it was concluded that the spring and the shock absorbers affect the pitching of the vehicle. In order to validate the computer simulated truck model, a physical prototype was constructed and tested.

  • PDF

인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구 (A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles)

  • 김영렬;박철;왕지남
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

물성치가 다른 시트에서의 인체 진동 측정 및 승차감 평가 (Human Response Measurement and Ride Quality Evaluation for Seats having various Material Porperties)

  • 조영건;박세진;윤용산
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.171-180
    • /
    • 2000
  • This paper deals with the whole-body vibration and ride quality evaluation in the vertical direction. The responses of the floor, hip, back, and head in four subjects were measured for various seats when the floor was excited by random vibration with r.m.s of 1.2m/s2 in the vertical direction. In the transmissibility between the hip and floor, the fundamental mode is observed at 4.4 Hz. In the transmissibility between the head and floor, the fundamental mode at 4.4Hz and the second mode at 7.6Hz are observed. It is shown that the head motion is 41% larger than the hip motion and the response of female subject is larger than that of male subject. The response without backrest also was compared with that with backrest. From these human responses ride quality of five seats were evaluated by the ride value such as transfer ration having frequency weighting function is the statistical sense. It is observed that the seat having high damping property can reduce the most acceleration exposed to hip in the statistical sense for all ride valves, while the seat having different seat spring doesn't show statistical difference.

  • PDF

차체의 유연성을 고려한 철도차량의 승차감 해석 (Study on the ride quality of vehicle with carbody flexibility)

  • 성재호;이강운;박길배;양희주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.272-277
    • /
    • 2007
  • Generally railway vehicle runs on the rail with endless interaction between wheel and rail. Irregularity of rail causes the periodic motion of the vehicle. In association with this motion, the design of vehicle would be carried out in order to avoid the resonance between car-body and bogie. It may be seen that the first vertical bending mode of car-body contributes considerably to the vertical ride comfort level. In this paper to know the effect of the car-body first vertical bending mode on vertical ride comfort, the mode has been considered with dynamic model. I-DEAS program was used to get the car-body first vertical bending mode and VAMPIRE program was used to analyze ride comfort index(Wz) with FE interface file.

  • PDF

레벨링밸브를 가진 공기스프링 현가장치의 승차감 및 조종안정성 해석 (Ride and Handling Analysis of An Air Spring Suspension with Leveling Valve)

  • 탁태오;박종훈
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.105-113
    • /
    • 2000
  • Air springs are now widely used in bus or truck suspensions due to their advantages over conventional metal spring as coil or leaf springs. Air springs have soft spring rates, which give better ride quality, and additional leveling system provides constant ride height and maintains almost same vertical natural frequencies. A mathematical model of an air spring suspension system with height control system is constructed and dynamic responses of the suspension system are investigated in the light of leveling valve motion characteristic, vertical motion natural frequency. Also, using a full vehicle model, handling characteristics of an air spring suspension is studied and the results are compared with real test results, which shows good agreements.

  • PDF

차량 승차감에 미치는 공차의 영향 분석을 위한 해석적 방법 (Analytical Method to Analyze the Tolerance Effect on the Vehicle Ride Comfort)

  • 김범석;유홍희
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.549-555
    • /
    • 2008
  • Analytical method to analyze the tolerance effect on the vehicle ride comfort is suggested in this paper. Ride comfort is one of the most important performance indices which decide the vehicle design quality. In general, the ride comfort is affected by the variations of parameters of a vehicle model. Therefore, the effects of the parameters on the ride comfort need to be evaluated statistically based on the whole-body vibration of the vehicle. In this paper, weighted RMS values of the acceleration PSD of a seat position are used to define the ride comfort. The equations of motion and the sensitivity equations are derived based on a 5-DOF vehicle model. By employing the sensitivity information of the acceleration at the seat position, the tolerance effect on the vehicle ride comfort could be effectively analyzed.

비선형 현가요소를 가진 철도차량의 승차감 민감도 해석 (Ride Sensitivity Analysis of a Train Model with Non-linear Suspension Elements)

  • 탁태오;김명훈
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.233-240
    • /
    • 1998
  • In this study, ride sensitivity analysis of train with non-linear suspension elements is performed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train is parameterized. Equation of motion of the train model is derived, and using the direct differentiation method, sensitivity equations are obtained. For a nominal ride quality performance index, sensitivity analysis with respect to various design parameters regarding non-linear suspension parameters is carried out.

  • PDF

데이퍼 판스프링 적용 차량의 승차감 향상에 관한 연구 (A Study on Improving Ride Quality of the Commercial Vehicle)

  • 김동우;임종훈
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.229-235
    • /
    • 1996
  • The tapered leaf spring is regarded as the adequate tool to improve ride quality and to reduce vehicle weight of commercial vehicles. These effects are due to minimizing the contact area of each leaf by reducing the number of leaves and by optimizing the thickness profile of each leaf. But in adapting the tapered leaf spring to improve ride quality, we often have some problems of bad pitching and bouncing motion. This paper shows the basic properties of tapered leaf spring by rig tests and how to improve ride quality of a vehicle with tapered leaf springs, compared with multi-leaf spring. From the results of vehicle tests and rig tests it is concluded that the ride quality was effected by the dynamic spring rate and the friction of the tapered leaf spring.

  • PDF

설계변수의 산포를 고려한 차량 승차감의 강건최적설계 (Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters)

  • 송필곤;;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.