• Title/Summary/Keyword: motion transformation

Search Result 345, Processing Time 0.024 seconds

Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix (전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석)

  • 이영신;천일환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.366-375
    • /
    • 1991
  • In this study, vibrational behavior of uniform pipe carrying a moving medium is studied by using a transfer matrix and the displacement function derived from the conventional beam theory. In various boundary conditions, flow velocity and mechanical property change of the variation of natural frequency are investigated. The Coriolis term in the original differential equation of motion has been ignored in the investigation. This method is used to study the variation of natural frequency with flow velocity for clamped-clamped, cantilevered, clamped-pinned, pinned-pinned, free-free straight pipe element. It is shown that clamped-clamped, free-free pipe have the highest natural frequency and critical velocity values while cantilevered pipe have the smallest natural frequency for the same mechanical properties. From the vibration effects of mechanical property variation, it is shown that bending stiffness and pipe length variation has large influence on natural frequency and critical velocity. Since the order of transfer matrix is not changed with boundary conditions of pipe element, this method proposed can be easily applied to personal-computer for vibration analysis of pipe element. Furthermore, this method can be extended to three-dimensional system by using a coordinate transformation for the analysis of piping systems.

Measurement and Numerical Model on Wave Interaction with Coastal Structure (해안구조물과 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2009
  • In recent years, there's been strong demand for coastal structures that have a permeability that serves water affinity and disaster prevention from wave attack. The aim of this study is to examine the wave transformation, including wave run-up that propagates over the coastal structures with a steep slope. A numerical model based on the nonlinear shallow water equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable underlayer and laboratory measurements was carried out in terms of the free surface elevations and fluid particle velocities for the cases of regular and irregular waves over 1:5 impermeable and permeable slopes. The numerical results were used to evaluate the application and limitations of the PBREAK numerical model. The numerical model could predict the cross-shore variation of the wave profile reasonably, but showed less accurate results in the breaking zone that the mass and momentum influx is exchanged the most. Except near the wave crest, the computed depth averaged velocities could represent the measured profile below the trough level fairly well.

Development of a CFD Program for Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, Jong-Cheol;An, Hui-Seop;O, Il-Seong;Choe, Jong-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.242-248
    • /
    • 2002
  • It is important to develop new effective technologies to increase the interruption capacity and to reduce the size of a UB(Gas Circuit Breakers). Major design parameters such as nozzle geometries and interrupting chamber dimensions affect the cooling of the arc and the breaking performance. But it is not easy to test real GCB model in practice as in theory. Therefore, a simulation tool based on a computational fluid dynamics(CFD) algorithm has been developed to facilitate an optimization of the interrupter. Special attention has been paid to the supersonic flow phenomena between contacts and the observation of hat-gas flow for estimating the breaking performance. However, there are many difficult problems in calculating the flow characteristics in a GCB such as shock wave and complex geometries, which may be either static or in relative motion. Although a number of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a GCB is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program using CFB-CAD integration technique based on Cartesian cut-cell method, which could reduce researcher's efforts to generate the mesh and achieve the accurate representation of the geometry designed by a CAD tools.

Mega Irises: Per-Pixel Projection Illumination Compensation for the moving participant in projector-based visual system (Mega Irises: 프로젝터 기반의 영상 시스템상에서 이동하는 체험자를 위한 화소 단위의 스크린 투사 밝기 보정)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Projector-based visual systems are widely used for VR and experience display applications. But the illumination irregularity on the screen surface due to the screen material and its light reflection properties sometimes deteriorates the user experience. This phenomenon is particularly troublesome when the participants of the head tracking VR system such as CAVE or the motion generation experience system continually move around the system. One of reason to illumination irregularity is projector-screen specular reflection component to participant's eye's position and it's analysis needs high computation complexity. Similar to calculate specular lighting term using GPU's programmable shader, Our research adjusts every pixel's brightness in runtime with given 3D screen space model to reduce illumination irregularity. For doing that, Angle-based brightness compensate function are considered for specific screen installation and modified it for GPU-friendly compute and access. Two aspects are implemented, One is function access transformation from angular form to product and the other is piecewise linear interpolate approximation.

The Kinematic Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동학적 분석)

  • Yeo, Hong-Chul;Yoon, Hee-Joong;Ryu, Ji-Seon;Jung, Chul-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.47-65
    • /
    • 2003
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to postflight of salto forward straight 3/2 turn motion between skitters and less-skitters. four S-VHS video cameras operating at 60Hz were used to record the performances. five elite male gymnasts were participated in this study as subjects. three-dimensional coordinates of 20 body landmarks during each trial were collected using a Direct Linear Transformation method. The digitized body landmarks were smoothed using a Butterworth second order with low pass digital filter and a cutoff frequency of 10Hz. 1. A skitter, got a high score for performance, showed shorter time and faster horizontal velocity than a less-skitter at the board contact. also, a skitter extended quickly his knee and hip joint after contacting board for preflight phase. 2. A skitter revealed faster time and horizontal velocity the vault from taking off board than a less-skiller. A skitter took a long time and high distance to get the vertical peak compared with a less-skiller. 3. For the second phase, a skitter, who executes the most optimal motions among the subjects, displayed a long flight time, a high height, and a far flight distance as well as maintaining consistent horizontal speed even at the peak of post flight. On the other side, a less-scorer displayed a slow vertical velocity, distance and a short time at the point of take-off from vault as well as low height at the peak of post flight.

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions (비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측)

  • Park, SunHoo;Eun, WonJong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.833-844
    • /
    • 2018
  • This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.

Music Visualization Expression in Modern Fashion - Focus on the application of Mondrian's paintings to Alexander McQueen's 2014 Spring Ready-to-wear Collection -

  • Kim, Sung-Soo;Kim, Young-Sam
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2014
  • This study analyzes music visualization characteristics in modern fashion based on Wassily Kandinsky's music visualization theory. Alexander McQueen's 2014 Spring Ready-to-wear Collection (as inspired by Mondrian's paintings) was selected as the research subject. First, an analysis of Mondrian's paintings based on Wassily Kandinsky's theory shows that music visualization characteristics can be categorized into spatiality, mobility, and duality. Second, McQueen applied Mondrian's paintings to the overall design, structured the model's shape in the painting, or created patterns using colors and lines that introduced them in clothes; symbolic forms were also introduced as part of or a decorative factor of the clothes. Third, spatiality refers to the creation of a feeling of space through emptiness or fill using lines, colors, and shape. Musical atmosphere such as dissonance were expressed in clothing through the application of color contrast, lines and silhouette dynamics, and symbolic format and patterns by Mondrian. Fourth, mobility generally refers to motion caused by a certain stimulus. Mondrian expressed vibration, internal resonance, sound level in music that emphasized color irregularity, primary color contrast, and rough brush touches as well as free and organic patterns. McQueen expressed this with primary color contrast using different materials, rough touch based on texture, and pattern repetition through transformation. Fifth, duality generally refers to the artistic effect caused by overlap. Mondrian created a resemblance of dissonance and music through line and color as expressed through the duality of clothing design components based on the artistic sense of the designer.

Experimental Study for Evaluation of Non-Linear Dispersive Wave Model in Shallow Water (천해역 비선형분산파랑 모델의 평가를 위한 수리 실험 연구)

  • 이중우;신승호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.189-196
    • /
    • 1999
  • In order to verify a numerical model for the calculation of wave motion around an offshore barrier in shallow water, laboratory physical experiments are necessary. In this study, sample experiments are carried out on the wave and wave induced current fields due to a sloping bottom topography and on that due to an isolated structure from the coastline. The water body is divided into 4 levels, in which the current tracking floaters are deployed to measure the wave induced currents. Data measurement was continued using the limited wave gauges and current tracking floaters including a video camera from the top. The wave heights for the preselected surface and time-averaged velocity distributions at each level were measured in detail. The distribution of wave and current fields was analyzed precisely combining the whole measured laboratory data. Moreover, comprehensive analyses were carried out on non-linearity of wave transformation in terms of skewness and atiltness.

  • PDF

Active control of a nonlinear and hysteretic building structure with time delay

  • Liu, Kun;Chen, Long-Xiang;Cai, Guo-Ping
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.431-451
    • /
    • 2011
  • Time delay inevitably exists in active control systems, and it may cause the degradation of control efficiency or instability of the systems. So time delay needs to be compensated in control design in order to eliminate its negative effect on control efficiency. Today time delay in linear systems has been more studied and some treating methods had been worked out. However, there are few treating methods for time delay in nonlinear systems. In this paper, an active controller for a nonlinear and hysteretic building structure with time delay is studied. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, the motion equation of the system with explicit time delay is transformed into the standard state space representation without any explicit time delay. Then the fourth-order Runge-Kutta method and instantaneous optimal control method are applied to the controller design with time delay. Finally, numerical simulations and comparisons of an eight-story building using the proposed time-delay controller are carried out. Simulation results indicate that the control performance will deteriorate if time delay is not taken into account in the control design. The simulations also prove the proposed time delay controller in this paper can not only effectively compensate time delay to get better control effectiveness, but also work well with both small and large time delay problems.

Analysis of Sports Biomechanical Variable on the Motions of Left and Right Spikes of Volleyball (배구 레프트 스파이크와 라이트 스파이크 동작에 대한 운동역학적 변인 비교 분석)

  • Cho, Ju-Hang;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.125-134
    • /
    • 2006
  • The purpose of this study was to analyze the Biomechanical elements by looking at the differences on the motions of the right and left spikes of right-handed offense volleyball players, using 3D image analysis and force platform. For that purpose, spike motions of six male university volleyball players were recorded three times each using two 16mm high speed cameras and the speed of recording was set at 60 frames/sec. The coordinated raw data was leveled as 6Hz using low pass filtering method and the calculation of 3D coordinates was done by using a DLT (Direct Linear Transformation) method. Also KWON 3D program was used to analyze the variables. Through the experiments and research, the following results were found: That is, in case of the right spike, the required time from the toss to the impact, which affected the success rate of offense showed as longer and on the take-off, the exact timing to touch the ball was longer because the pace between right and left feet was wider, and also after the jump, the distance between the feet indicated shorter, than the left. In addition, the degree of somersault and horizontal adduction of shoulder joint was smaller and the degree of medial rotation of shoulder joint showed bigger than the left, so it indicated that it was not centered on the body, but by the arm with an axis of shoulder using a swing motion. After the impact, the speed of the ball indicated slower compared to the left spike.