• Title/Summary/Keyword: motion transformation

Search Result 345, Processing Time 0.026 seconds

A Study on Making Skirt from the standpoints of Human Engineering (Skirt 제작에 관한 인간공학적 연구 -앉는 동작을 중심으로-)

  • 이년순
    • Journal of the Korean Home Economics Association
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 1980
  • The basic pattern of skirt should be functional in addition to be fit the body. The author paid special attention to the expansion and contraction of the shell which were made the lower trunk and thigh caused by sitting motions. The replicas of the shell were taken by using a gypsum method on 1 female under 4 standardized motions; standing motion, (basic motion), sitting on the chair with flextion 90' at the hip and the knee joints sitting with dropping knees, and sitting with benting legs side wards. Those replicas obtained were developed to the patterns and changes in shape and area of those were measured. Typical displacement and transformation of the shell surface patterns were showed geographycally fig 5-1 to 5-4. mean values of expansion and constriction were obtained by measuring the shell surface on 60 female under the 4 motions. the mean values of it were showed numerically in Table 1-1 to 1-3. The following results were obtained; 1. Vertical constriction of front of the shell were observed near sulcus in guinalis, and vertical extension were near the knees. Horizontal extension were observed near the thighs and the knees. 2. Vertical constrictions of the back of the shell were observed near the knees. It seemed to be influnced the flexion angles of knee points. vertical extension were near gluteus and thighs. Horizontal constriction were small, and horizonlal extension were near gluteus. 3. The high rates of constriction and extension were found near sulcus in guinalis, glutes, and knees. 4. The rates of constriction and extension on the waist line were very low. 5. The highest values of constriction and extension were found in hip and knees.

  • PDF

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

A Novel Interaction Method for Mobile Devices Using Low Complexity Global Motion Estimation

  • Nguyen, Toan Dinh;Kim, JeongHwan;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang;Chang, JuneYoung;Eum, NakWoong
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.734-742
    • /
    • 2012
  • A novel interaction method for mobile phones using their built-in cameras is presented. By estimating the path connecting the center points of frames captured by the camera phone, objects of interest can be easily extracted and recognized. To estimate the movement of the mobile phone, corners and corresponding Speeded-Up Robust Features descriptors are used to calculate the spatial transformation parameters between the previous and current frames. These parameters are then used to recalculate the locations of the center points in the previous frame into the current frame. The experiment results obtained from real image sequences show that the proposed system is efficient, flexible, and able to provide accurate and stable results.

A Strap-Down Inertial Measuring Unit for Motion Measurement of an AUV (AUV의 운동계측을 위한 스트랩-다운형 관성계측장치(IMU)의 개발)

  • Lee, Pan-Muk;Jeon, Bong-Hwan;Lee, Jong-Sik;Oh, Jun-Ho;Kim, Do-Hyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.96-96
    • /
    • 1997
  • This paper presents a Inertial Measuring Unit(IMU) for motion measurement of an AUV. The IMU is composed of three parts: inertial sensors with three servo accelerometers and three rate gyros, an analog/digital interface board, and a signal processing board with TMS320C31 DSP processor. The IMU is a class of strap-down inwetial navigation system does not applicable directly to the navigation system in consequence of the AUV and integrated sensors for an integrated navigation system of the AUV. Fast calculstion of direction cosine matrix for the coordinate transformation body to reference is obtained through the DSP processor. A switching algotrithm is used to lessen the low frequency drift effect of the gyros in the vertical plane with use of low pass filtering of the signal of the accelerometers.

A Simulation Technique of the Shipboard INS Transfer Alignment Environments using Hardware-In-the-Loop Simulation (HILS를 이용한 함정의 관성항법장치 전달정렬 환경 모의 기법)

  • Kim, Woon-Sik;Yang, Tae-Soo;Kim, Sang-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • A simulation technique, which simulate dynamic motion and communication environments of ship in the lab, is needed in order to reduce the testing cost when we evaluate the transfer alignment performance of shipboard INS. Hardware-In-the-Loop Simulation(HILS) can be used as an effective test method for those system because it can provide flexible and realistic simulation environments, various test scenario, and repeated test environment in the lab without additional cost and person. This paper presents the methods for implementing the real time HILS environment for testing transfer alignment performance of shipboard INS. It includes real time executive for controlling realtime simulation and calculating the ship motion, communication method for interfacing between the systems, and coordinate transformation method for converting real ship coordinate attitude data to lab coordinate attitude data.

The Prediction of Wave Groups within a Harbor to Assist Ship Operation at the Entrance

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.125-130
    • /
    • 2006
  • Waves, which are the main source of ship motions in a seaway, considerably affect the performance of a ship. The study of waves and their impact on ship motions within harbors is an important aspect of the design and operation of harbors. The prediction of incoming groups of waves is particularly important for evaluating ship motion within a harbor. Such a prediction makes it possible to evaluate ship safety more accurately. The wave transformation model reported here is applied to actual ports based on Boussinesq wave equations both non-linear and dispersive wave processes be considered in order to capture physical effects such as wave shoaling, refractions, reflection and diffraction in variable depth environments. The prediction of incoming groups of waves is particularly important for evaluating ship motion within a harbor, Such a prediction makes it possible to evaluate ship safety more accurately and provide safe wave informations for navigation. Furthermore, a wave information support system is proposed for entering ships as one technique for improving the safety of ship operations. This system predicts the run of waves and reduces the danger by identifying the most dangerous point near the harbor entrance at the small wave groups.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data (힐버트-황 변환에 통한 Hand Accelerometer 데이터의 핵심 패턴 추출)

  • Choe, Byeongseog;Suh, Jung-Yul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.179-190
    • /
    • 2017
  • Hand Accelerometers are widely used to detect human motion patterns in real-time. It is essential to reliably identify which type of activity is performed by human subjects. This rests on having accurate template of each activity. Many human activities are represented as a set of multiple time-series data from such sensors, which are mostly non-stationary and non-linear in nature. This requires a method which can effectively extract patterns from non-stationary and non-linear data. To achieve such a goal, we propose the method to apply Hilbert-Huang Transform which is known to be an effective way of extracting non-stationary and non-linear components from time-series data. It is applied on samples of accelerometer data to determine its effectiveness.

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

Numerical Simulation of Ship-induced Wave Using FLOW-$3D^{(R)}$ (FLOW-$3D^{(R)}$를 이용한 항주파 수치모의)

  • Kang, Young-Seung;Kim, Pyeong-Joong;Hyun, Sang-Kwon;Sung, Ha-Keun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.255-267
    • /
    • 2008
  • Using the commercial CFD code FLOW-$3D^{(R)}$ which has an implicit General Moving Object (GMO) method, the ship-induced wave has been simulated. In the implicit GMO method of the FLOW-$3D^{(R)}$, a rigid body's motion which is either user-prescribed (prescribed motion) or dynamically coupled to fluid flow (coupled motion) can be computed with six degrees of freedom (DOF). The simulated horizontal wave patterns are agree with the wave patterns represented by depth Froude number. The model has been well-simulated to generate the depth-dependent wave transformation in comparison of uniform depth case to complicated depth case. Additionally, it shows that ship-induced waves have been reasonably generated by two ships passing each other and by a ship moving in a curve. Therefore, it is suggested that the FLOW-$3D^{(R)}$ model calibrated with observed data should provide more accurate prediction for the ship-induced wave in a certain fairway or harbor.