• Title/Summary/Keyword: motion transformation

Search Result 345, Processing Time 0.03 seconds

Dynamic Analysis of Flexible Mechanical System (폐쇄계를 포함하는 탄성 기계시스템의 동역학적 해석)

  • 안덕환;이병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.271-276
    • /
    • 1995
  • This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.

Control of a 3-DOF vertical articulated robotic system using nonlinear transformation control (비선형 변환제어에 의한 3자유도 수직 다관절 로봇의 제어)

  • Yang, Chang-Il;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1809-1818
    • /
    • 1997
  • Mathematical models of industrial robots or manipulators are highly nonlinear equations with nonlinear coupling between the variables of motion. As the working speed has been fast, the effects of nonlinear terms have become serious. So the control algorithm based on approximately linearized equation looses the efficiency. In order to design the control law for the nonlinear models, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory in this study. Nonlinear terms of the system are eliminated and coupled terms are decoupled by this feedback law. This method is applied to a 3-D.O.F. vertical articulated manipulator by both experiments and simulations and compared with PID control which is widely used in the industry.

GPS-based 3D View Augmented Reality System for Smart Mobile Devices

  • Vo, Phuc;Choi, Chang Yeol
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • Recently, augmented reality has been proved immensely useful on a day to day basis when tied with location-based technology. In this paper, we present a new method for displaying augmented reality contents on mobile devices. We add 3D models on the view of the camera and use location-based services, motion sensors to calculate the transformation of models. Instead of remaining at a fixed position on camera view while moving around a 3D model, the model rotates on display in the opposite direction that the user is walking. We also design client as a ubiquitous client to reduce constraints on disk space and memory capacity on mobile devices. Implementation results show effective use in creating GPS-based 3D view augmented reality contents for Smart Mobile Devices.

A Software Development for the Dynamic Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학 해석을 위한 소프트웨어 개발)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.89-97
    • /
    • 2009
  • In this paper, a computer software for dynamic analysis of a high mobility tracked vehicle with pre/post processor is developed. Model of a tracked vehicle is composed of chassis, turret, mount, gun, and road-wheel assembly. Track is modeled as an extensible cable and the track tensions are applied on the wheels as external forces. The system equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method. The pre and post processors are developed using the Visual C++.

Hybrid Position/Force Control for Dynamic Walking of Biped Walking Robot (이족보행로봇의 동적 보행을 위한 혼합 위치/힘 제어)

  • 박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.566-569
    • /
    • 2000
  • This hybrid position/force control for the dynamic walking of the biped robot is performed in this paper. After the biped robot was modeled with 14 degrees of freedom of the multibody dynamics, the equations of motion are constructed using velocity transformation technique. Then the inverse dynamic analysis is performed for determining the driving torques and the ground reaction forces. From this analysis, obtains the maximum ground contact force at the moment of contacting which act on the rear of the sole of swing leg and the distribution curve of the ground reaction. Because these maximum force and distribution type acts an important role to the stability of the whole dynamic walking, they are reduced and distributed smoothly by means of the trajectory of the modified ground reaction force. This new trajectory is used to the reference input for more stable dynamic walking of the whole walking region.

  • PDF

Approximate Coordinate Transformations for Simulation of Turbulent Flows with Active Wall Motions (능동적 벽 운동을 수반하는 난류유동의 해석을 위한 근사 좌표변환)

  • Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1467-1475
    • /
    • 2001
  • In the present paper, approximate coordinate transformations for simulation of turbulent flows with active wall motions, leading to a significant reduction in the computational cost while maintaining the numerical accuracy, are presented: the Navier-Stokes equations are coordinate-transformed with an approximation of Taylor-series truncation and neglect of some less-significant terms. The performance of the proposed transformations is evaluated in simulation of the channel flow at Re$\sub$$\tau$/=140 with wall deformations of │η$\sub$m/$\^$+/ 5. The approximate transformations provide flow structures as wall as turbulence statistics in good agreement with those from a complete coordinate transformation [Phys. Fluids 12, 3301 (2000)] and allow 25-30% savings in the CPU time as compared to the complete one.

Development Robust Video Stabilization algorithm based Opticla Flow (Optical flow를 이용한 영상의 흔들림 보정 알고리듬 개발)

  • Cho, Gyeong-Rae;Doh, Deog-Hee;Kim, Hong-Yeob;Jin, Gwang-Ja;Kim, Do-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.66-69
    • /
    • 2019
  • An image compensating algorithm with high-vibration movement is proposed, using optical flow and the Kalman Filter. The temporal motion vector field is calculated by Optical flow and suspicious vectors are removed or adjusted by the Gaussian interpolation method. The high-vibrated vector filled is stabilized by the Kalman filter. Lastly, compensated images are obtained by affine transformation. This proposed algorithm gives good compensated video images on high-vibration situations.

The Position Estimation of a Car Using 2D Vision Sensors (2D 비젼 센서를 이용한 차체의 3D 자세측정)

  • 한명철;김정관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.296-300
    • /
    • 1996
  • This paper presents 3D position estimation algorithm with the images of 2D vision sensors which issues Red Laser Slit light and recieves the line images. Since the sensor usually measures 2D position of corner(or edge) of a body and the measured point is not fixed in the body, the additional information of the corner(or edge) is used. That is, corner(or edge) line is straight and fixed in the body. For the body which moves in a plane, the Transformation matrix between the body coordinate and the reference coordinate is analytically found. For the 3D motion body, linearization technique and least mean squares method are used.

  • PDF

Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension (현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증)

  • Kim Sangsup;Jung Hongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

Construction of Dynamic Image Animation Network for Style Transformation Using GAN, Keypoint and Local Affine (GAN 및 키포인트와 로컬 아핀 변환을 이용한 스타일 변환 동적인 이미지 애니메이션 네트워크 구축)

  • Jang, Jun-Bo
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.497-500
    • /
    • 2022
  • High-quality images and videos are being generated as technologies for deep learning-based image style translation and conversion of static images into dynamic images have developed. However, it takes a lot of time and resources to manually transform images, as well as professional knowledge due to the difficulty of natural image transformation. Therefore, in this paper, we study natural style mixing through a style conversion network using GAN and natural dynamic image generation using the First Order Motion Model network (FOMM).