• Title/Summary/Keyword: motion reference unit(MRU)

Search Result 2, Processing Time 0.02 seconds

Development of Motion Reference Unit for Autonomous Underwater Vehicle (자율무인잠수정의 자세계측장치의 개발)

  • 김도현;오준호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.101-108
    • /
    • 1998
  • This paper concerns the navigation algorithm of motion reference unit (MRU) for autonomous underwater vehicle (AUV) We apply the strapdown navigation system using middle level inertial sensors. But, because the MRU consists of inertial sensors, the values of AUV motion calculated by navigation computer are increased by drift property of inertial sensors. Therefore, we propose the attitude algorithm using switching method according to the motion of AUV From this algorithm, the drift terms are eliminated effectively for roll and pitch. But, another device is required for yaw angle.

  • PDF

Vision-Based Dynamic Motion Measurement of a Floating Structure Using Multiple Targets under Wave Loadings (다중 표적을 이용한 부유식 구조물의 영상 기반 동적 응답 계측)

  • Yi, Jin-Hak;Kim, Jin-Ha;Jeong, Weon-Mu;Chae, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.19-30
    • /
    • 2012
  • Recently, vision-based dynamic deflection measurement techniques have significant interests and are getting more popular owing to development of the high-quality and low-price camcorder and also image processing algorithm. However, there are still several research issues to be improved including the self-vibration of vision device, i.e. camcorder, and the image processing algorithm in device aspect, and also the application area should be extended to measure three dimensional movement of floating structures in application aspect. In this study, vision-based dynamic motion measurement technique using multiple targets is proposed to measure three dimensional dynamic motion of floating structures. And also a new scheme to select threshold value to discriminate the background from the raw image containing targets. The proposed method is applied to measure the dynamic motion of large concrete floating quay in open sea area under several wave conditions, and the results are compared with the measurement results from conventional RTK-GPS(Real Time Kinematics-Global Positioning System) and MRU(Motion Reference Unit).