• 제목/요약/키워드: motion platform

검색결과 573건 처리시간 0.03초

비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구 (A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 조성민;최재훈;권오준
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

Resonant response of spar-type floating platform in coupled heave and pitch motion

  • Choi, E.Y.;Cho, J.R.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.513-521
    • /
    • 2018
  • In this paper, the resonance response of spar-type floating platform in coupled heave and pitch motion is investigated using a CPU time-effective numerical method. A coupled nonlinear 2-DOF equation of motion is derived based on the potential wave theory and the rigid-body hydrodynamics. The transient responses are solved by the fourth-order Runge-Kutta (RK4) method and transformed to the frequency responses by the digital Fourier transform (DFT), and the first-order approximation of heave response is analytically derived. Through the numerical experiments, the theoretical derivation and the numerical formulation are verified from the comparison with the commercial software AQWA. And, the frequencies of resonance arising from the nonlinear coupling between heave and pitch motions are investigated and justified from the comparison with the analytically derived first-order approximation of heave response.

An Algorithmic Study on Free-gyro Positioning System( I ) - Measuring Nadir Angle by using the Motion Rate of a Spin Axis -

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • 한국항해항만학회지
    • /
    • 제31권9호
    • /
    • pp.751-757
    • /
    • 2007
  • The authors aim to establish the theory necessary for developing free gyro positioning system and focus on measuring the nadir angle by using the motion rate of a free gyro. The azimuth of a gyro vector from the North can be given by using the property of the free gyro. The motion rate of the spin axis in the gyro frame is transformed into the platform frame and again into the NED (north-east-down) navigation frame. The nadir angle of a gyro vector is obtained by using the North components of the motion rate of the spin axis in the NED frame. The component has to be transformed into the horizontal component of the gyro by using the azimuth of the gyro vector and then has to be integrated over the sampling interval.

테니스 서브 스탠스 유형에 따른 서비스 동작의 운동학적 분석 (Kinematical Analysis of Service Motion by Stance Types in Tennis Serve)

  • 김성섭;김의환
    • 한국운동역학회지
    • /
    • 제18권1호
    • /
    • pp.147-158
    • /
    • 2008
  • 본 연구의 목적은 우수 고등학교 테니스 선수 7명을 대상으로 테니스 서브 스탠스 유형(pinpoint stance, platform stance)에 따른 서비스 동작의 운동학적인 분석을 통하여 빠른 서브를 구사할 수 있도록 지도할 기초자료를 제공하는데 있다. Pinpoint Stance는 백스윙국면에서 뒷발을 앞발방향으로 이동하기 때문에 신체중심(COM)과 라켓의 많은 움직임으로 인해 소요시간이 Platform Stance 보다 0.04초 길게 소요되었다. 발을 이동하면서 골반부위를 앞으로 이동시켜서 몸을 활처럼 많이 휘게 함으로써 백스윙부터 임팩트까지 파워를 낼 수 있는 구간을 넓혀 COM과 라켓의 속도를 빠르게 하여 서브의 속도를 증가시키는데 기여하는 스탠스임을 알 수 있었다. Platform Stance는 백스윙국면에서 발의 이동이 없기 때문에 COM과 라켓의 작은 움직임으로 인해 소요시간이 Pinpoint Stance 보다 0.04초 짧게 소요되었다. 발의 이동이 없어서 파워를 낼 수 있는 구간을 좁혀 COM과 라켓의 속도가 느리게 나타났지만 중심의 안정감을 높여 서브의 성공률을 높이는데 기여하는 스탠스임을 알 수 있었다.

플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석 (Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion)

  • 김영진;유동옥;권오준
    • 한국항공우주학회지
    • /
    • 제46권5호
    • /
    • pp.368-375
    • /
    • 2018
  • 본 연구에서는 부유식 플랫폼의 6자유도 방향으로의 주기 운동이 로터 공력 성능에 미치는 영향을 확인하기 위해 부유식 해상 풍력터빈에 대한 공력 해석이 수행되었다. 수치 해석을 위해 블레이드 요소 운동량 방법을 이용하였으며, 유동 박리와 후류 영향에 의한 비정상 공력 효과를 포착하기 위해 인디셜 응답 방법에 기반한 동적 실속 모델을 이용하였다. 로터에 의해 유도되는 내리 흐름은 운동량 이론과 난류 후류 상태에 대한 경험적 모델을 연계하여 계산하였다. heave, sway, surge 방향으로의 병진 운동과 roll, pitch, yaw 방향으로의 회전 운동을 포함한 플랫폼 주기 운동을 고려하였으며, 각각의 모션은 사인함수 형태로 적용되었다. 수치해석을 위한 대상 풍력터빈으로는 NREL 5MW 풍력터빈이 사용되었다. 해석 결과로부터 세 방향 병진 운동 모드 중, surge 운동 시 로터 공력 변화가 상대적으로 크게 나타났으며, 회전 운동 모드의 경우, pitch 운동에 의해 로터 공력이 크게 변화됨을 확인할 수 있었다.

Current effects on global motions of a floating platform in waves

  • Shen, Meng;Liu, Yuming
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.121-141
    • /
    • 2017
  • The purpose of this paper is to understand and model the slow current (~2 m/s) effects on the global response of a floating offshore platform in waves. A time-domain numerical simulation of full wave-current-body interaction by a quadratic boundary element method (QBEM) is applied to compute the hydrodynamic loads and motions of a floating body under the combined influence of waves and current. The study is performed in the context of linearized potential flow theory that is sufficient in understanding the leading-order current effect on the body motion. The numerical simulations are validated by quantitative comparisons of the hydrodynamic coefficients with the WAMIT prediction for a truncated vertical circular cylinder in the absence of current. It is found from the simulation results that the presence of current leads to a loss of symmetry in flow dynamics for a tension-leg platform (TLP) with symmetric geometry, resulting in the coupling of the heave motion with the surge and pitch motions. Moreover, the presence of current largely affects the wave excitation force and moment as well as the motion of the platform while it has a negligible influence on the added mass and damping coefficients. It is also found that the current effect is strongly correlated with the wavelength but not frequency of the wave field. The global motion of a floating body in the presence of a slow current at relatively small encounter wave frequencies can be satisfactorily approximated by the response of the body in the absence of current at the intrinsic frequency corresponding to the same wavelength as in the presence of current. This finding has a significant implication in the model test of global motions of offshore structures in ocean waves and currents.

부유식 풍력-파력발전 플랫폼과 탑재된 파력발전기와의 단방향 연성 운동 해석 (One-way Coupled Response Analysis between Floating Wind-Wave Hybrid Platform and Wave Energy Converters)

  • 이혜빈;배윤혁;조일형
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.84-90
    • /
    • 2016
  • In this study, a six degree-of-freedom motion analysis of a wind-wave hybrid platform equipped with numerous wave energy converters (WECs) was carried out. To examine the effect of the WECs on the platform, an analysis of one-way coupling was carried out, which only considered the power take-off (PTO) damping of the static WECs on the platform. The equation of motion of a floating platform with mooring lines in the time domain was established, and the responses of the one-way coupled platform were then compared with the case of a platform without any coupling effects from the WECs. The hydrodynamic coefficients and wave exciting forces were obtained from the 3D diffraction/radiation pre-processor code WAMIT based on the boundary element method. Then, an analysis of the dynamic responses of the floating platform with or without the WEC effect in the time domain was carried out. All of the dynamics of a floating platform with multiple wind turbines were obtained by coupling FAST and CHARM3D in the time domain, which was further extended to include additional coupled dynamics for multiple turbines. The analysis showed that the PTO damping effect on platform motions was negligible, but coupled effects between multiple WECs and the platform may differentiate the heave, roll, and pitch platform motions from the one without any effects induced by WECs.

Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine

  • Hong, Sin-Pyo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.785-794
    • /
    • 2017
  • This paper is concerned with the comparative numerical and experimental study on the natural behavior and the motion responses of a 1/75 moored scale model of a 2.5 MW spar-type floating offshore wind turbine subject to 1-D regular wave. Heave, pitch and surge motions and the mooring tensions are investigated and compared by numerical and experimental methods. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass and three mooring lines are pre-tensioned by means of linear springs. The numerical simulations are carried out by a coupled FEM-cable dynamics code, while the experiments are performed in a wave tank equipped with the specially-designed vision and data acquisition system. Using the both methods, the natural behavior and the motion responses in RAOs are compared and parametrically investigated to the fairlead position, the spring constant and the location of mass center of platform. It is confirmed, from the comparison, that both methods show a good agreement for all the test cases. And, it is observed that the mooring tension is influenced by all three parameters but the platform motion is dominated by the location of mass center. In addition, from the sensitivity analysis of RAOs, the coupling characteristic of platform motions and the sensitivities to the mooring parameters are investigated.

횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계 (Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion)

  • 김상태;서정민;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

모션 그래픽스의 디지털 사이니지 적용 (Digital Signage with Motion Graphics)

  • 박대혁
    • 디지털융복합연구
    • /
    • 제18권2호
    • /
    • pp.377-383
    • /
    • 2020
  • 디지털 사이니지는 기존 사인물을 대체할 디지털 영상 플랫폼으로 지속적으로 연구되어지고 있다. 전통적인 디지털 사이니지는 스틸 이미지와 텍스트가 결합되어 각종 정보를 이미지 전환방식으로 출력하는 형태였으나 오늘날에 이르러서는 사이니지 시스템의 고사양화, 인터넷 속도의 빠른 향상과 영상 및 음성 압축 기술의 발전, 그리고 HTML5의 상용화 환경에 따라 큰 전환을 이루고 있다. 또한 범용적 형태인 와이드 스크린 디스플레이 뿐만 아니라 다중 디스플레이와 셋탑박스의 다양한 조합, OLED, 미디어파사드, 레이져빔 프로젝터 등을 활용해 다양한 형태로 변형되어 크리에이터의 창의적이고 다양한 시도를 가능하게 하고 있다. 본 연구는 이처럼 다양하고 빠르게 진화하고 있는 미래형 플랫폼 디지털 사이니지의 모션 그래픽스 적용에 대한 연구 및 적용사례, 기술 분석을 통해 테크놀러지와 그래픽 디자인, 영상의 융합에 대한 연구와 나아가서는 디지털 영상 콘텐츠 제작자, 인터렉티브 산업계 종사자, 모션 그래픽스 디자이너들에게 도움이 될 수 있는 연구 논문이 될 것을 기대한다.