• Title/Summary/Keyword: motion path

Search Result 548, Processing Time 0.03 seconds

A Simple Control Method for Opening a Door with Mobile Manipulator

  • Kang, Ju-Hyun;Hwang, Chang-Soon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1593-1597
    • /
    • 2003
  • The home service robot supports human beings by performing various kinds of works at home. This paper presents a simple control method for opening a door from the viewpoint of the mobile manipulation. The simulation shows various results of path planning and motion planning for opening a door. The joint trajectories were generated by the simulation system. In general, a six-axis force/torque sensor at an end-effector is needed in order to maintain the static equilibrium of the manipulator. But we show another method. From three components of applied forces which was directly obtained by the three-axis force sensor and three components of applied forces which was indirectly estimated by the joint-torque sensors, all of joint torques that will exactly balance forces at the end-effector in the static situation can be found. It is more practical method than using a six-axis force sensor in a wrist. Experimental results have shown that the opening a door can be realized more effectively from the suggested control method of mobile manipulation.

  • PDF

Navigation Trajectory Control of Security Robots to Restrict Access to Potential Falling Accident Areas for the Elderly (노약자의 낙상가능지역 진입방지를 위한 보안로봇의 주행경로제어)

  • Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.497-502
    • /
    • 2015
  • One of the goals in the field of mobile robotics is the development of personal service robots for the elderly which behave in populated environments. In this paper, we describe a security robot system and ongoing research results that minimize the risk of the elderly and the infirm to access an area to enter restricted areas with high potential for falls, such as stairs, steps, and wet floors. The proposed robot system surveys a potential falling area with an equipped laser scanner sensor. When it detects walking in elderly or infirm patients who in restricted areas, the robot calculates the velocity vector, plans its own path to forestall the patient in order to prevent them from heading to the restricted area and starts to move along the estimated trajectory. The walking human is assumed to be a point-object and projected onto a scanning plane to form a geometrical constraint equation that provides position data of the human based on the kinematics of the mobile robot. While moving, the robot continues these processes in order to adapt to the changing situation. After arriving at an opposite position to the human's walking direction, the robot advises them to change course. The simulation and experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

User-Oriented Controller Design for Multi-Axis Manipulators (다관절 머니퓰레이터의 사용자 중심 제어기 설계)

  • Son, HeonSuk;Kang, DaeHoon;Lee, JangMyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • This paper proposes a PC-based open architecture controller for a multi-axis robotic manipulator. The designed controller can be applied for various multi-axes robotic manipulators since the motion controller is implemented on a PC with its peripheral devices. The accuracy of the controller based on the computed torque method has been measured with the dynamic model of manipulator. Since the controller is implemented in the PC-based architecture, it is free from the user circumstances and the operating environment. Dynamics of the manipulator have been compensated by the feed forward path in the inner loop and the resulting linear outer loop has been controlled by PD algorithm. Using the specialized language, it can be more efficient in programming and in driving of the multi-axis robot. Unlike the conventional controller that is used to control only a specific robot, this controller can be easily changed for various types of robots. This paper proposes a PC-based controller that has a simple architecture with its simple interface circuits than general commercial controllers. The maintenance and the performance of the controller can be easily improved for a specific robot. In fact, using a Samsung multi-axis robot, AT1, the controller performance and convenience of the PC-based controller have been verified by comparing to the commercial one.

  • PDF

Effect by the application of the Verlet Neighboring list in a Molecular Dynamics Simulation (분자동역학법에 있어 인접분자 리스트의 영향)

  • Choi Hyun-Kue;Kim Hae-min;Choe Soon-Youl;Kim Kyung-Kun;Choi Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.60-67
    • /
    • 2005
  • Generally. in the molecular dynamics simulations. the Verlet neighboring list algorithm is used for the reduction of a simulation time On the other hand. the application of the Verlet neighboring list forces the time evolution of a simulation system to follow an unrealistic path in a phase space. In equilibrium state, it does not matter with the simulation results because the individual molecule's motion is originally random and any effect due to a small deviation from a real time evolution can be completely ignored. However, if an unsteady state is involved. such a deviation may significantly affect to the results. That is, there is a Possibility that the simulation results Provide ones with any misleading data In this study we evaluated the effect due to the Verlet neighboring list in performing the simulation of a non-equilibrium state and suggested the method to avoid it.

Regrasp Planner Using Look-up Table (참조표를 이용한 재파지 계획기)

  • Jo, Gyeong-Rae;Lee, Jong-Won;Kim, Mun-Sang;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.848-857
    • /
    • 2000
  • A pick-and-place operation in 3-dimensional environment is basic operation for human and multi-purpose manipulators. However, there may be a difficult problem for such manipulators. Especially, if the object cannot be moved with a single grasp, regrasping, which can be a time-consuming process, should be carried out. Regrasping, given initial and final pose of the target object, is a construction of sequential transition of object poses that are compatible with two poses in the point of grasp configuration. This paper presents a novel approach for solving regrasp problem. The approach consists of a preprocessing and a planning stage. Preprocessing, which is done only once for a given robot, generates a look-up table which has information of kinematically feasible task space of end-effector through all the workspace. Then, using the table planning automatically determines possible intermediate location, pose and regrasp sequence leading from the pick-up to put-down grasp. Experiments show that the presented is complete in the total workspace. The regrasp planner was combined with existing path.

Characteristics of Micro-Machining Using Two-Dimensional Tool Vibration

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • This paper discusses the feasibility of improving micro-machining accuracy by using two-dimensional(2-D) vibration cutting. Vibration cutting is generated by two piezo actuators arranged orthogonally : one is actuated by a sine curve voltage input, and the other is actuated by a phase-shifted sine curve voltage. A tool attached to the vibrator oscillates in a 2-D elliptical motion, depending on the frequencies, amplitudes, and the phase shifts of two input signals and the workpiece feedrate. Along the elliptical tool locus, cutting is done in the lower part, and non-cutting is done in the upper part. By this way a unique feature of 2-D vibration cutting, that is, air lubrication between a tool and chips, is caused. Another unique feature of 2-D vibration cutting was experimentally verified, that is, some negative thrust force occurs as the direction of chip movement on a tool rake face is reversed. Those features not only help chips flow smoothly and continuously but also reduce cutting force, which results in a higher quality machined surface. Through tool path simulations and experiments under several micro-machining conditions, the 2-D vibration cutting, compared to conventional cutting, was found to result in a great decrease in the cutting force, a much smoother surface, and much less burr.

  • PDF

Theoretical Analysis of Biaxial Films for the Optical Compensation of TN-LCDs (TN-LCD 광학보상을 위한 Biaxial Film의 이론적 해석)

  • Kim, Bong-Sik;Kang, Choon-Ky;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.209-212
    • /
    • 2012
  • In this paper, we have studied on the optimal design of the optical compensation film for the TN-LCDs. To have wide viewing angle panels, several methods such as multi-domain method, optical path method, and phase compensation method have been proposed. Among these methods, this paper focused on the phase compensation method. In the phase compensation method, the phase retardation generated from the optical birefringence for the off-axis incident is compensated by using optical films with refractive anisotropy. To compensate the phase retardation of the TN-LCDs, we have proposed design concept for the biaxial optical films and analyzed the optical performance for the proposed structures. The calculation of the dynamic motion of the liquid crystals was based on the Ericksen-Leslie theory and the optical performance of the TN-LCD was calculated from the Extended Jones Matrix Method. From the results, we have confirmed that the optical characteristics of the TN-LCDs with the biaxial films have been improved considerably compared with the TN-LCDs compensated by the combination of the uniaxial films.

Stability Analysis for the Deployment of Unmanned Surface Vehicles

  • Dharne, Avinash G.;Lee, Jaeyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • Motion control schemes are generally classified into three categories (point stabilization, trajectory tracking, and path following). This paper deals with the problem which is associated with the initial deployment of a group of Unmanned Surface Vehicle (USVs) and corresponding point stabilization. To keep the formation of a group of USVs, it is necessary to set the relationship between each vehicle. A forcing functions such as potential fields are designed to keep the formation and a graph Laplacian is used to represent the connectivity between vehicle. In case of fixed topology of the graph representing the communication between the vehicles, the graph Laplacian is assumed constant. However the graph topologies are allowed to change as the vehicles move, and the system dynamics become discontinuous in nature because the graph Laplacian changes as time passes. To check the stability in the stage of deployment, the system is modeled with Kronecker algebra notation. Filippov's calculus of differential equations with discontinuous right hand sides is then used to formally characterize the behavior of USVs. The stability of the system is analyzed with Lyapunov's stability theory and LaSalle's invariance principle, and the validity is shown by checking the variation of state norm.

A Study on Kinematics Analysis and Motion Control of Humanoid Robot Arm with Eight Joints (휴머노이드 로봇 관절 아암의 운동학적 해석 및 모션제어에 관한 연구)

  • Jung, Yang-Geun;Lim, O-Duek;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • This study proposes a new approach to Control and trajectory generation of a 8 DOF human robot arm with computational complexity and singularity problem. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of research, we propose an analytical kinematics algorithm for a 8 DOF bipped dual robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regarding to the end-effector pose. Performance of the proposed algorithm was verified by simulation test with various conditions. It has been verified that the trajectory planning using this algorithm.

Building of a Hierarchical Semantic Map with Classified Area Information in Home Environments (가정환경에서의 분류된 지역정보를 통한 계층적 시맨틱 지도 작성)

  • Park, Joong-Tae;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.252-258
    • /
    • 2012
  • This paper describes hierarchical semantic map building using the classified area information in home environments. The hierarchical semantic map consists of a grid, CAIG (Classified Area Information in Grid), and topological map. The grid and CAIG maps are used for navigation and motion selection, respectively. The topological map provides the intuitive information on the environment, which can be used for the communication between robots and users. The proposed semantic map building algorithm can greatly improve the capabilities of a mobile robot in various domains, including localization, path-planning and HRI (Human-Robot Interaction). In the home environment, a door can be used to divide an area into various sections, such as a room, a kitchen, and so on. Therefore, we used not only the grid map of the home environment, but also the door information as a main clue to classify the area and to build the hierarchical semantic map. The proposed method was verified through various experiments and it was found that the algorithm guarantees autonomous map building in the home environment.