• Title/Summary/Keyword: motion path

Search Result 546, Processing Time 0.033 seconds

Effects of the Sampling Time in Motion Controller Implementation for Mobile Robots (모바일 로봇 모션 제어에 있어 샘플링 시간의 효과)

  • Jang, Tae-Ho;Kim, Youngshik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.154-161
    • /
    • 2014
  • In this research we investigate motion controller performance for mobile robots according to changes in the control loop sampling time. As a result, we suggest a proper range of the sample time, which can minimize final posture errors while improving tracking capability of the controller. For controller implementation into real mobile robots, we use a smooth and continuous motion controller, which can respect robot's path curvature limitation. We examine motion control performance in experimental tests while changing the control loop sampling time. Toward this goal, we compare and analyze experimental results using two different mobile robot platforms; one with real-time control and powerful hardware capability and the other with non-real-time control and limited hardware capability.

Path planning of a Robot Manipulator using Retrieval RRT Strategy

  • Oh, Kyong-Sae;Kim, Eun-Tai;Cho, Young-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.138-142
    • /
    • 2007
  • This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the: given environment. The suggested method is applied to the control of $KUKA^{TM}$, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of $MatLab^{TM}\;and\;RecurDyn^{TM}$.

Basic Control Algorithm for Parallel Formation of Multi-mining Robots (다중 집광로봇의 수평대형유지를 위한 기초 알고리즘 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Hong, Sup;Kim, Sang-Bong
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.465-473
    • /
    • 2014
  • This paper proposes a formation control method by which multi-mining robots maintain a specified formation and follow a path. To secure the path tracking performance, a pure-pursuit algorithm is considered for each individual robot, and to minimize the deviation from the reference path, speed reduction in the steering motion is added. For the formation, in which two robots are parallel in a lateral direction, the robots track the specified path at a constant distance. In this way, the Leader-Follower method is adopted and the following robot knows the position and heading angle of the leader robot. Through the experimental test using two ground vehicle models, the performance is verified.

A collision-free path planning for multiple mobile robots by using hopfield neural net with local range information (국소 거리정보를 얻을 수 있는 다중 이동로보트 환경에서의 Hopfield 신경회로 모델을 이용한 충돌회피 경로계획)

  • 권호열;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.726-730
    • /
    • 1990
  • In this paper, assuming that local range information is available, a collision-free path planning algorithm for multiple mobile robots is presented by using Hopfield neural optimization network. The energy function of the network is built using the present position and the goal position of each robot as well as its local range information. The proposed algorithm has several advantages such as the effective passing around obstacles with the directional safety distance, the easy implementation of robot motion planning including its rotation, the real-time path planning capability from the totally localized computations of path for each robot, and the adaptivity on arbitrary environment since any special shape of obstacles is not assumed.

  • PDF

Technical Issues in Pattern Machining (패턴 가공에서의 기술적인 고려사항)

  • 김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.263-270
    • /
    • 2001
  • In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.

  • PDF

Software Acceleration/Deceleration Methods for Industrial Robots and CNC Machine Tools (산업용로보트와 CNC 공작기계를 위한 소프트웨어 가감속 방법)

  • 김동일;송진일;김성권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.562-572
    • /
    • 1992
  • In this paper, we propose software algorithms which provide acceleration/deceleration characteristics essential to high dynamic performance at the transient states where industrial robots or CNC machine tools start and stop. Software acceleration/deceleration methods are derived from the mathematical analyses of typical hardware systems controlling acceleration/deceleration. These methods make servo motors, which drive axes of motion, start and stop smoothly without vibration in the repeated tools. The path error, which is one of the most significant factors in the performance evaluation of industrial robots or CNC machine tools, is analyzed for linear, exponential, and parabolic acceleration/deceleration algorithms in case of circular interpolation. The analyses show that path error consists of the distance between the required path and generated one through acceleration/deceleration, and that between the generated one through acceleration/deceleration algorithm and the actual one of the end effector of the industrial robot or tool of the CNC equipment.

  • PDF

Collision-Free Path Planning of Articulated Robot using Configuration Space (형상 공간을 이용한 다관절 로보트의 충돌 회피 경로 계획)

  • Kim, J.H.;Choi, J.S.;Kang, H.Y.;Kim, Dong-Won;Yang, S.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.57-65
    • /
    • 1994
  • A collision-free path planning algorithm between an articulated robot and polyhedral obstacles using configuration space is presented. In configuration space, a robot is treated as a point and obstacles are treated as grown forbidden regions. Hence path planning problem is transformed into moving a point from start position to goal position without entering forbidden regions. For mapping to 3D joint space, slice projection method is used for first revolute joint and inverse kinematics is used for second and third revolute joint considering kinematic characteristics of industrial robot. Also, three projected 2D joint spaces are used in search of collision-free path. A proper example is provided to illustrate the proposed algorithm.

  • PDF

A Collision Avoidance Algorithm of a Mobile Robot in the Presence of Moving Obstacle (움직이는 장애물이 있을때 이동 로봇의 충돌 회피 알고리즘)

  • Kim, S.W.;Gweon, D.G.;Cha, Y.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.158-167
    • /
    • 1997
  • For the use of a mobile robot in dynamic environment, a collision-avoidance algorithm with moving obsta- cle is necessary. In this paper, a collsion-avoidance algorithm of a mobile robot is presented, when a mobile robot detects the collision with moving obstacle on the navigational path. Using reported positions of moving obstacle with sensors, the mobile robot predicts the next position of moving obstacle with possibility of collision. The velocity of moving obstacle is modeled as random walk process with Gaussian distribution. The optimal collision-avoidance path in which turning motion of the mobile robot is considered is generated with relative velocity between the mobile robot and moving obstacle. For the safety of collision-avoidance path, attractive potential with the safety factor is suggested. The simulation results using this algorithm show the mobile robot avoids collision with moving obstacle in many cases.

  • PDF

Motion of Stone Skipping Simulation by Physically-based Analysis (물리기반 해석을 통한 물수제비 운동 시뮬레이션)

  • Do, Joo-Young;Ra, Eun-Chul;Kim, Eun-Ju;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • Physically-based simulation modeling is to simulate the real world by using physical laws such as Newton's second law of motion, while other modelings use only geometric Properties. In this paper, we present a real time simulation of stone skipping by using the physically-based modeling. We also describe interaction of a stone on the surface of water, and focus on calculating the path of the stone and the natural phenomena of water The path is decided by velocity of the stone and drag force from the water The motion is recalculated until the stone is immersing into the water surface. Our simulation provides a natural motion of stone skippings in real time. And the motion of stone skippings are generated by give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments (키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법)

  • Tuvshinjargal, Doopalam;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.549-559
    • /
    • 2015
  • In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.