• 제목/요약/키워드: motion path

검색결과 548건 처리시간 0.023초

퍼텐션 필드법을 이용한 모바일 로봇의 경로디자인 (Trajectory Design for Mobile Robot Using Potential Field Method)

  • ;손민한;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.248-249
    • /
    • 2013
  • This study presents a potential field method for path planning to goal with a mobile robot in unknown environment. The proposed algorithm allows mobile robot to navigate through static obstacles, and find the path in order to reach the target without collision. This algorithm provides the robot with the possibility to move from the initial position to the final position (target). Stage and Player simulator is used to perform the robot motion and implement the potential field algorithm in C/C++ for performance evaluation. Two-dimensional terrain model is used to simulate the ability of robot in motion planning without any collision.

Path coordinator by the modified genetic algorithm

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1939-1943
    • /
    • 1991
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the shortest collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal of this paper, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy[3] and a traveling salesman problem strategy(TSP)[23]. The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Neural Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is proposed to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm[21] and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm[5].

  • PDF

천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발 (Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes)

  • 이종규;박영조;이상룡
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

6-자유도 Eclipse-II 모션 시뮬레이터의 최적 원점 복귀 알고리즘 (Optimal Home Positioning Algorithm for a 6-DOF Eclipse-II Motion Simulator)

  • 신현표;김종원
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.441-448
    • /
    • 2012
  • This paper describes the optimal home positioning algorithm of Eclipse-II, a new conceptual parallel mechanism for motion simulator. Eclipse-II is capable of translation and 360 degrees continuous rotation in all directions. In unexpected situations such as emergency stop, riders have to be resituated as soon as possible through a shortest translational and rotational path because the return paths are not unique in view of inverse kinematic solution. Eclipse-II is man riding. Therefore, the home positioning is directly related to the safety of riders. To ensure a least elapsed time, ZYX Euler angle inverse kinematics is applied to find an optimal home orientation. In addition, the subsequent decrease of maximum acceleration and jerk values is achieved by combining the optimal return path function with cubic spline, which consequently reduces delivery force and vibration to riders.

퍼지제어와 성능함수 최적화를 이용한 여유자유도 로봇 팔의 장애물 우회 알고리즘 (An Obstacle-Avoidance Algorithm for a Redundant Robot Arm Using Fuzzy Control and Performance-Function Optimization)

  • 이병룡;황재석;박찬호;양순용;안경관
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.187-194
    • /
    • 2002
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During talc motion, if there exists no obstacle, the end-effector of the robot arm moves along the predefined path. But if these exists an obstacle and close to talc robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture far collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sites of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

회전대우를 갖는 1자유도 평면기구의 기구합성에 관한 연구 (A Study of Mechanism Synthesis of One-Degree-of-Freedom Planar Linkages with Revolute Joints)

  • 조선휘;신동원
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1330-1341
    • /
    • 1993
  • 본 연구에서는 회전대우(revolute joint)들로 이루어진 1자유도 평면기구들의 특성을 파악하고 그래이프이론(graph theory)을 이용하여 기구의 형태를 행렬로 표시 하여 체이터베이스에 저장하였다. 또한 기구의 특성중의 하나인 작업조건(function specification)에 따른 무오차점(precision point)의 최대 개수를 알아내는 프로그램 을 개발하여 이로써 얻은 정보를 또 다른 데이타베이스에 저장하였다. 이와같이 구축 된 데이터베이스들로부터 설계자의 요구에 적합한 기구를 선택하여 형태합성 문제를 해결하였다.

Improved View-Based Navigation for Obstacle Avoidance using Ego-Motion

  • Hagiwara, Yoshinobu;Suzuki, Akimasa;Kim, Youngbok;Choi, Yongwoon
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.112-120
    • /
    • 2013
  • In this study, we propose an improved view-based navigation method for obstacle avoidance and evaluate the effectiveness of the method in real environments with real obstacles. The proposed method possesses the ability to estimate the position and rotation of a mobile robot, even if the mobile robot strays from a recording path for the purpose of avoiding obstacles. In order to achieve this, ego-motion estimation was incorporated into the existing view-based navigation system. The ego-motion is calculated from SURF points between a current view and a recorded view using a Kinect sensor. In conventional view-based navigation systems, it is difficult to generate alternate paths to avoid obstacles. The proposed method is anticipated to allow a mobile robot greater flexibility in path planning to avoid humans and objects expected in real environments. Based on experiments performed in an indoor environment using a mobile robot, we evaluated the measurement accuracy of the proposed method, and confirmed its feasibility for robot navigation in museums and shopping mall.

자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획 (Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments)

  • 서장필;이경수
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어 (Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot)

  • 정우진;유광현
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

Robot Fish Tracking Control using an Optical Flow Object-detecting Algorithm

  • Shin, Kyoo Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.375-382
    • /
    • 2016
  • This paper realizes control of the motion of a swimming robot fish in order to implement an underwater robot fish aquarium. And it implements positional control of a two-axis trajectory path of the robot fish in the aquarium. The performance of the robot was verified though certified field tests. It provided excellent performance in driving force, durability, and water resistance in experimental results. It can control robot motion, that is, it recognizes an object by using an optical flow object-detecting algorithm, which uses a video camera rather than image-detecting sensors inside the robot fish. It is possible to find the robot's position and control the motion of the robot fish using a radio frequency (RF) modem controlled via personal computer. This paper proposes realization of robot fish motion-tracking control using the optical flow object-detecting algorithm. It was verified via performance tests of lead-lag action control of robot fish in the aquarium.