• Title/Summary/Keyword: motion optimization

Search Result 552, Processing Time 0.03 seconds

Code Optimization Techniques to Reduce Energy Consumption of Multimedia Applications in Hybrid Memory

  • Dadzie, Thomas Haywood;Cho, Seungpyo;Oh, Hyunok
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.274-282
    • /
    • 2016
  • This paper proposes code optimization techniques to reduce energy consumption of complex multimedia applications in a hybrid memory system with volatile dynamic random access memory (DRAM) and non-volatile spin-transfer torque magnetoresistive RAM (STT-MRAM). The proposed approach analyzes read/write operations for variables in an application. Based on the profile, variables with a high read operation are allocated to STT-MRAM, and variables with a high write operation are allocated to DRAM to reduce energy consumption. In this paper, to optimize code for real-life complicated applications, we develop a profiler, a code modifier, and compiler/link scripts. The proposed techniques are applied to a Fast Forward Motion Picture Experts Group (FFmpeg) application. The experiment reduces energy consumption by up to 22%.

Control of Redundant Manipulators Using Null-Space Dynamics (여유자유도 로보트 충격제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.63-70
    • /
    • 1995
  • This paper presents an impact control algorithm for reducing the potentially damaging effects by interation of redundant manipulators with their environments. In the proposed control algorithm, the redundancy is resolved at the torque level by locally minimizing joint torque, subject to the operational space dynamic formulation which maps the joint torque set into the operational forces. For a given pre-impact velocity of the manipulator, the proposed approach is on generating joint space trajectories throughout the motion near the contact which instantaneously minimize the impulsive force which is a scalar function of manipulator's configurations. The comparative evaluation of the proposed algorithm with a local torque optimization algorithm with a local torque optimization algorithm without reducing impact is performed by computer simulation. The simulation results illustrate the effectiveness of the algorithm in reducing both the effects of impact and large torque requirements.

  • PDF

VIDEO INPAINTING ALGORITHM FOR A DYNAMIC SCENE

  • Lee, Sang-Heon;Lee, Soon-Young;Heu, Jun-Hee;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.114-117
    • /
    • 2009
  • A new video inpainting algorithm is proposed for removing unwanted objects or error of sources from video data. In the first step, the block bundle is defined by the motion information of the video data to keep the temporal consistency. Next, the block bundles are arranged in the 3-dimensional graph that is constructed by the spatial and temporal correlation. Finally, we pose the inpainting problem in the form of a discrete global optimization and minimize the objective function to find the best temporal bundles for the grid points. Extensive simulation results demonstrate that the proposed algorithm yields visually pleasing video inpainting results even in a dynamic scene.

  • PDF

CL-data Optimization of 5-axis Face-milling Via C-space and Effective-radius Map (C-space 및 유효반경-맵을 이용한 5축 페이스 밀링의 공구자세 최적화에 관한 연구)

  • 박정환;이정근
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • Five-axis NC machining, in general, is utilized in fabricating impellers, turbine blades, marine propellers that can be machined more effectively rather than three-axis machining. There have been many researches concerning tool interference avoidance, optimization of tool orientation. The C-space or Configuration-space was originated from the robotics area, which depicts interference-free joint-values in motion planning. In the paper we propose an optimizing scheme by which the maximum effective-radius of a face-milling cutter can be achieved for each CC(cutter-contact) point. Also the concept of a C-space for a CC point, the effective-radius map for 5-axis face-milling, and some illustrative examples of marine propeller machining, are presented.

Vibration Analysis of Angle-Ply Laminated Shells (ANGLE-PLY 적층쉘의 진동특성에 관한 연구)

  • Park, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.409-415
    • /
    • 2011
  • Optimization Analysis of angle-ply laminated shells, having one pair of opposite edges supported, are investigated on the basis of the first-order shear deformation theory. The equations of motion of the shell are solved by the use of ritz method. A range of results are presented for composite shells to show the effects of lamination angle and number of layers on natural frequency. In addition, an analysis of the strain energy distributions is used as an aid for the better understanding of the vibration characteristics of the shells.

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Pass obstacle walking robot using Jansen mechanism (경사/장애물/특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계)

  • Song, Chi kwang;Park, Jung bin;Choi, Hoon;Kim, Jong hyuk;An, Hyun kyum;Lee, Gun hee
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.477-480
    • /
    • 2016
  • Based on the Jansen mechanism theory, a walking robot is developed, which is able to overcome the given obstacles. Taking joint positions and leg directions as design parameters, the walking robot is analyzed. In order to analyze and optimize the leg motion, Edison program and Jansen mechanism optimization solver are used, respectively. It is found that Edison program is so effective to determine joint variables and position of leg direction. With the help of these programs, lots of trials or errors could be saved.

  • PDF

The Optimization of Multi legged walking robot using Teo Jansen mechanism (테오 얀센 메커니즘을 이용한 다족 보행 로봇의 최적화)

  • KO, HyunJin;PARK, SuBin
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.506-509
    • /
    • 2016
  • In this paper, the multi-leg robot is designed using Teo Jansen mechanism. The purpose of this paper is to develop unique robot, which operates efficiently in any environment. In that case, speed and accuracy are required. The indication which evaluate the value is Ground Score according to the Jansen's mechanism. To optimize the Ground Score. Genetic Algorithm (GA) in MATLAB Toolbox is used, which is numerical analytic algorithm to quickly convergence into optimum point. The Optimization of value is visualized by M-Sketch. M-Sketch was useful for simulation and evaluation of mechanic's dynamic motion. The robot's draft is produced into finished product by Edison Designer.

  • PDF

An Informal Analysis of Diffusion, Global Optimization Properties in Langevine Competitive Learning Neural Network (Langevine 경쟁학습 신경회로망의 확산성과 대역 최적화 성질의 근사 해석)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1344-1346
    • /
    • 1996
  • In this paper, we discuss an informal analysis of diffusion, global optimization properties of Langevine competitive learning neural network. In the view of the stochastic process, it is important that competitive learning gurantee an optimal solution for pattern recognition. We show that the binary reinforcement function in Langevine competitive learning is a brownian motion as Gaussian process, and construct the Fokker-Plank equation for the proposed neural network. Finally, we show that the informal analysis of the proposed algorithm has a possiblity of globally optimal. solution with the proper initial condition.

  • PDF

Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target Tracking (실시간 탄도 궤적 목표물 추적을 위한 GPU 기반 병렬적 입자군집최적화 기법)

  • Yunho, Han;Heoncheol, Lee;Hyeokhoon, Gwon;Wonseok, Choi;Bora, Jeong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.355-365
    • /
    • 2022
  • This paper addresses the problem of real-time tracking a high-speed ballistic target. Particle filters can be considered to overcome the nonlinearity in motion and measurement models in the ballistic target. However, it is difficult to apply particle filters to real-time systems because particle filters generally require much computation time. This paper proposes an accelerated particle filter using graphics processing unit (GPU) for real-time ballistic target tracking. The real-time performance of the proposed method was tested and analyzed on a widely-used embedded system. The comparison results with the conventional particle filter on CPU (central processing unit) showed that the proposed method improved the real-time performance by reducing computation time significantly.