• Title/Summary/Keyword: motion error

Search Result 1,362, Processing Time 0.026 seconds

Design and Implementation of Arduino-based Efficient Home Security Monitoring System (아두이노 기반의 효율적인 홈 시큐리티 모니터링 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.49-54
    • /
    • 2016
  • In this paper, we propose an Arduino-based effective home security monitoring system. Proposed home security monitoring system consists of arduino which is inexpensive main processor, ultrasonic sensor and human body detection sensor to detect whether someone breaks into home. Data from ultrasonic sensor and human body detection sensor are transmitted to web server via ethernet shield connected to arduino. Web server checks whether someone breaks into home by using stored data from ultrasonic sensor and human body detection sensor. Snapshot is photographed via webcam connected by using JQuery. Photographed snapshot is stored in web server as image file. A user can monitor in web or smart device environment by using HTML5, CSS and Canvas. When examining efficiency of proposed home security monitoring system, it was found that proposed system is easier to be made than existing home security system and is cost effective by using arduino and is efficient and convenient and stable as it enables a user to handle an error in person and it uses reliable data.

State Observer Based Modeling of Voltage Generation Characteristic of Ionic Polymer Metal Composite (상태 관측기 설계 기법을 적용한 이온성 고분자 금속 복합체의 전압 생성 특성 모델링)

  • Lee, Hyung-Ki;Park, Kiwon;Kim, Myungsoo
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.383-388
    • /
    • 2015
  • Ionic Polymer-Metal Composite (IPMC) consisting of soft membrane plated by platinum electrode layers on both surfaces generates electric energy when subjected to various mechanical stimuli. The paper proposes a circuit model that describes the physical composition of IPMC to predict the voltage generation characteristic corresponding to bending motion. The parameter values in the model are identified to minimize the RMS error between the real and simulated outputs. Following the design of IPMC circuit model, the state observer of the model is designed by using pole placement technique which improves the model accuracy. State observer design technique is also applied to find the inverse model which estimates the input bending angles from the output voltage data. The results show that the inverse model estimates input bending angles fairly well enough for the further applications of IPMC not only as an energy harvester but also as a bending sensor.

Gaze Effects on Spatial and Kinematic Characteristics in Pointing to a Remembered Target

  • Ryu, Young-Uk;Kim, Won-Dae;Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.23-29
    • /
    • 2006
  • The purpose of the present study was to examine gaze effects on spatial and kinematic characteristics during a pointing task. Subjects were asked to watch and point to an aimed target (2 mm in diameter) displayed on a vertically mounted board. Four gaze conditions were developed as combinations of "seeing-aiming" in terms of the eye movements: Focal-Focal (F-F), Focal-Fixing (F-X), Fixing-Focal (X-F), and Fixing-Fixing (X-X). Both the home target and an aimed target were presented for 1 second and then were disappeared in F-F and X-F. In X-F and X-X, only an aimed target disappeared after 1 second. Subjects were asked to point (with index finger tip) to an aimed target accurately as soon as the aimed target was removed. A significant main effect of gaze was found (p<.01) for normalized movement time. Peripheral retina targets had significantly larger absolute error compared to central retina targets on the x (medio-lateral) and z (superior-inferior) axes (p<.01). A significant undershooting to peripheral retina targets on the x axis was found (p<.01). F-F and X-F had larger peak velocities compared to F-X and X-X (p<.01). F-F and X-F were characterized by more time spent in the deceleration phase compared to F-X and X-X (p<.01). The present study demonstrates that central vision utilizes a form of on-line visual processing to reach to an object, and thus increases spatial accuracy. However, peripheral vision utilizes a relatively off-line visual processing with a dependency on proprioceptive information.

  • PDF

Smart Touch Screen Output System Based on ICT (ICT 기반 스마트 멀티터치 영상 출력 시스템)

  • Park, Yu-Jin;Choi, Si-Woong;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.138-143
    • /
    • 2017
  • The purpose of this paper is to implement a smart touch image output system based on ICT. The image output system here uses a pen-touch type screen coordinate recognition type to minimize the error because there is a difference in the resolution of the motion pattern between the image screen and the actual image using the image sensing reaction sensor. To do so, we built a smart image output system that can output image data by using ICT based technology and can be operated remotely without a PC, laptop, monitor, keyboard and mouse by using wireless method and smart touch function instead of the existing wired method. The result of this study is that the image can be output only if there is a wall, and the pen can be operated on the output image without the screen.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

Reduction of Dynamic False Contours based on Gray Level Selection method in PDP (계조 수 감소를 이용한 PDP내에서 의사 윤곽 제거 기법)

  • Ahn Sang-Jun;Eo Yoon-Phil;Lee Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.716-725
    • /
    • 2005
  • In this paper, we propose a new approach for the reduction of the dynamic false contours, which detects and compensates false contour artifacts adaptively. First, we develop a simple but effective method to select the pixels that are likely to cause the motion artifacts, based on the distribution of pixel values. Then, we merge the selected pixels into several regions using tree structure. Next, we reduce number of gray levels within the regions slightly to reduce the false contours. Note that reducing number of gray levels yield the distortion, thus it is applied only to the selected regions, instead of the whole picture. Intensive simulations on real moving image show that the proposed algorithm alleviates the dynamic false contours effectively with tolerable computational complexity.

Gaze Detection System by IR-LED based Camera (적외선 조명 카메라를 이용한 시선 위치 추적 시스템)

  • 박강령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.494-504
    • /
    • 2004
  • The researches about gaze detection have been much developed with many applications. Most previous researches only rely on image processing algorithm, so they take much processing time and have many constraints. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.2 cm of RMS error.

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

Experimental approach for selecting an optimal PID control gain using genetic algorithm for stewart platform (유전 알고리즘을 이용한 스튜어트 플랫폼의 최적 PID 제어 게인 선정을 위한 실험적 접근)

  • Park, Min-Kyu;Hong, Sung-Jin;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.73-80
    • /
    • 2000
  • The stewart platform manipulator proposed by stewart is the parallel manipulator which is composed of several independent actuators connecting the upper plate with the base plate and capable of executing a six degree of freedom motion. The manipulator has a structure of a closed loop form, and provides better load-to-weight ratio and ratio and rigidity than a serial manipulator with an open loop form. Moreover, the manipulator has high positional accuracy because position errors of actuators are not additive. Because of these advantages, this manipulator is widely used in many engineering applications such as a driving simulator, a tool of machining center, a force/torque sensor and so on. When this Stewart platform manipulator is controlled in joint space, it is difficult to design a controller using an analytic method due to nonhnearity and unknown parameters of actuators. Therefore, a PID controller is often used because of easiness in applications. To find the PID control gain, a trial-and-error method is generally used. This method is time-consuming, and does not guarantee a optimal gain. Thus, this paper proposes a GA-PID controller which selects an optimal PID control gain using genetic algorithms. And this proposed controller is evaluated experimentally and shows acceptable performance.

  • PDF

An Efficient Architecture of Transform & Quantization Module in MPEG-4 Video Code (MPEG-4 영상코덱에서 DCTQ module의 효율적인 구조)

  • 서기범;윤동원
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.29-36
    • /
    • 2003
  • In this paper, an efficient VLSI architecture for DCTQ module, which consists of 2D-DCT, quantization, AC/DC prediction block, scan conversion, inverse quantization and 2D-IDCT, is presented. The architecture of the module is designed to handle a macroblock data within 1064 cycles and suitable for MPEG-4 video codec handling 30 frame CIF image for both encoder and decoder simultaneously. Only single 1-D DCT/IDCT cores are used for the design instead of 2-D DCT/IDCT, respectively. 1-bit serial distributed arithmetic architecture is adopted for 1-D DCT/IDCT to reduce the hardware area in this architecture. To reduce the power consumption of DCTQ modu1e, we propose the method not to operate the DCTQ modu1e exploiting the SAE(sum of absolute error) value from motion estimation and cbp(coded block pattern). To reduce the AC/DC prediction memory size, the memory architecture and memory access method for AC/DC prediction block is proposed. As the result, the maximum utilization of hardware can be achieved, and power consumption can be minimized. The proposed design is operated on 27MHz clock. The experimental results show that the accuracy of DCT and IDCT meet the IEEE specification.