• Title/Summary/Keyword: motion coordination

Search Result 90, Processing Time 0.022 seconds

Comparison of Three Normalization Methods for 3D Joint Moment in the Asymmetric Rotational Human Movements in Golf Swing Analysis

  • Lee, Dongjune;Oh, Seung Eel;Lee, In-Kwang;Sim, Taeyong;Joo, Su-bin;Park, Hyun-Joon;Mun, Joung Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.289-295
    • /
    • 2015
  • Purpose: From the perspective of biomechanics, joint moments quantitatively show a subject's ability to perform actions. In this study, the effect of normalization in the fast and asymmetric motions of a golf swing was investigated by applying three different normalization methods to the raw joint moment. Methods: The study included 13 subjects with no previous history of musculoskeletal diseases. Golf swing analyses were performed with six infrared cameras and two force plates. The majority of the raw peak joint moments showed a significant correlation at p < 0.05. Additionally, the resulting effects after applying body weight (BW), body weight multiplied by height (BWH), and body weight multiplied by leg length (BWL) normalization methods were analyzed through correlation and regression analysis. Results: The BW, BWH, and BWL normalization methods normalized 8, 10, and 11 peak joint moments out of 18, respectively. The best method for normalizing the golf swing was found to be the BWL method, which showed significant statistical differences. Several raw peak joint moments showed no significant correlation with measured anthropometrics, which was considered to be related to the muscle coordination that occurs in the swing of skilled professional golfers. Conclusions: The results of this study show that the BWL normalization method can effectively remove differences due to physical characteristics in the golf swing analysis.

Differences in Angle of the Lower Extremities and Electromyography of Elderly Women Experienced a Fall (낙상경험 여성노인의 하지 분절 각도와 근전도 차이)

  • Jeon, Kyoung-Kyu;Park, Kwang-Dong;Park, Se-Hwan;Kang, Young-Seok;Kim, Dae-Geun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • The purpose of this study is to analyzed the coordination of lower limb of elderly women who experienced a fall to present basic information for sports science and to deal with the factors that make elderly women fall more effectively. Twenty elderly women were divided into two groups of 10. The mechanisms of balancing lower limb during walk and differences were compared and analyzed using motion analysis and electromyography. The findings of this study are as follows. The first, walking patterns of these women were unstable as their hip joints did not provide sufficient support because of aging. Second, the left and right knee joints showed different walking patterns. The third, the motions of ankle joints became abnormal with increased age. As for the activation of major lower limb muscles, rectus fermois muscle and biceps fermois muscle contracted more to prevent the bending of knees and moved forward while anterior tibial muscle and inner gastrocnemius muscle were demanded highly during walk and the rate of plantar flexion was reduced.

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

The Effect of 4-Week Proprioceptive Exercise Program in Patients with Ankle Sprain and Chronic Ankle Instability (발목 염좌 및 만성 발목 불안정성 환자들에 대한 4주간의 고유수용감각 운동 프로그램의 효과)

  • Lim, Seung-Geon;Oh, Duck-Won;Shim, Jae-Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Background : Ankle inversion sprains are one of the most common injuries in sports and activities of daily living that mostly concern physically active individuals. In most researches, proprioceptive deficit, muscle weakness and/or absent coordination have been regarded as a contributing factors. Despite the high incidence of ankle sprain and instability, therapeutic approaches to properly manage the symptoms have rarely been investigated. This study aimed to identify the effect of proprioceptive exercise program that is easy to integrate in normal training program. Methods : Subjects were randomly allocated to control group and experimental group consisting of 11 and 10 patients, respectively. The conservative treatment for the control group consisted of hot packs, ultrasound and TENS. In addition, the experimental group performed 7 exercises to enhance proprioceptive function of ankle joint. The therapeutic intervention of the controland experimental groups was performed a total of 20 exercise sessions, averaging 50 hour each, 5 times per week for 4 weeks. To compare the two groups, the level of ankle disability was assessed by using the ankle injury score scale in pre- and post-treatment. Results : On assessment of post-treatment, there were statistically significant differences in the scores of all sub-items, except for ankle laxity and range of motion, and the total score of ankle injury score scale between the two groups(p<0.05). In comparison between pre- and post-treatments, the significant difference in the scores of all sub-items and total score didn't appear for the control group, while the scores of most sub-items and total score of the experimental group were shown the statistically significant difference(p<0.05). Conclusion : The findings suggest that the proprioceptive exercise program is more effective for relieving ankle disability than conservative treatment therefore, the program to improve proprioceptive function should be recommended for prevention and rehabilitation of recurrent ankle inversion injuries.

  • PDF

Analysis of Domestic and International Biomechanics Research Trends in Shoes: Focusing on Research Published in 2015-2019 (신발 분야 국내외 운동역학 연구동향 분석: 2015-2019년에 발간된 연구를 중심으로)

  • Back, Heeyoung;Yi, Kyungock;Lee, Jusung;Kim, Jieung;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.185-195
    • /
    • 2020
  • Objective: The purpose of this study was to identify recent domestic and international research trends regarding shoes carried out in biomechanics field and to suggest the direction of shoe research later. Method: To achieve this goal of research, the Web of Science, Scopus, PubMed, Korea Education and Research Information Service and Korean Citation Index were searched to identify trends in 64 domestic and international research. Also, classified into the interaction of the human body, usability evaluation of functional shoes, smart shoe development research, and suggested the following are the suggestions for future research directions. Conclusion: A study for the coordination of muscle activity, control of motion and prevention of injury should be sought by developing shoes of eco-friendly materials, and scientific evidence such as physical aspects, materials, floor shapes and friction should be supported. Second, a study on elite athletes in various sports is needed based on functional shoes using new materials to improve their performance along with cooperation in muscle activities and prevention of injury. Third, various information and energy production are possible in real time through human behavioral information, and the application of Human Machine Interface (HMI) technology through shoe-sensor-human interaction should be explored.

Effects of Different Chair Heights on Ground Reaction Force and Trunk Flexion during Sit-to-Stand in the Elderly

  • Lee, Na-Kyung;Lee, Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.6
    • /
    • pp.449-452
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the coordination between trunk flexion and lower limb extension contributing to vertical propulsion during sit-to-stand (STS) at different chair heights in the elderly. Methods: Ten elderly subjects were asked to stand up at their natural speed from different chair heights : (1) $90^{\circ}$ knee flexion; (2) $100^{\circ}$ knee flexion; (3) $110^{\circ}$ knee flexion; and (4) $120^{\circ}$ knee flexion. A standard chair without a backrest or armrests was used in this study. To remove inertial effects of upper limb movements, subjects were asked to stand up from a chair with their arms crossed at the chest. Mean of results of three trials were used in the analysis at different knee flexion angles. Distances moved by the shoulder for compensatory trunk movement was recorded by motion analysis and vertical force was recorded under foot using force plates. Distances moved by the shoulder and vertical ground reaction force measurements were analyzed using repeated ANOVA. Results: Distances moved by the shoulder significantly decreased with higher chair (p<0.05). Vertical forces were not significant difference on chair heights (p>0.05), but results of pairwise comparisons for vertical force revealed significant difference between $90^{\circ}$ knee flexion and $120^{\circ}$ knee flexion (p<0.05). Conclusion: Trunk movement is probably used as a compensatory mechanism at low chair heights to increase lift-off from sitting by the elderly.

Influence on Intra-limb Coordination in Individuals Wearing a Knee Extension Constraint Brace during Walking (무릎 신전 제한형 보조기 착용이 보행 시 하지 내 협응에 미치는 영향)

  • Chang, Yoonhee;Jeong, Bora;Kang, Sungjae;Ryu, Jeicheong;Kim, Gyu Seok;Mun, Museong;Ko, Chang-Yong
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.207-214
    • /
    • 2016
  • The aim of this study was to evaluate Influence on intra-limb coordination in individuals wearing knee brace during walking. Seven healthy male adults ($32.3{\pm}2.7$ years old, $175.2{\pm}3.8cm$, $76.2{\pm}8.7kg$) participated. They wore knee brace or didn't wear any knee brace and were asked to walk along a 10 m long walkway. Spatiotemporal parameters, angles of the lower limbs, and intra-limb continuous relative phase (CRP) were measured and calculated. No differences of spatiotemporal parameters were shown (all p > 0.05). There were no changes in the angle and its range of motion (ROM) in the hip for the subjects as wearing knee brace, while ROM ($65.5{\pm}3.7^{\circ}$ vs. $60.5{\pm}3.5^{\circ}$, p < 0.05) of the angle and maximum flexion angles (stance: $31.9{\pm}4.6$ vs. $25.6{\pm}5.5$, swing: $76.7{\pm}3.1$ vs. $68.9{\pm}3.4$, all p < 0.05) in the knee significantly decreased. No changes in ROM of angle in the ankle were shown, whereas maximum dorsiflexion decreased ($22.4{\pm}2.6$ vs. $19.2{\pm}2.1$, p < 0.05) and maximum plantarflexion increased ($9.5{\pm}3.0$ vs. $15.7{\pm}2.2$, p<0.05). There were no changes in most of CRP between joints. CRP between the hip and knee joints decreased ($93.0{\pm}7.8$ vs, $84.7{\pm}4.9$, p < 0.05). Most of CRP standard deviation increased (between the hip and ankle joint during swing: $25.1{\pm}6.7$ vs. $32.4{\pm}1.9$, between the knee and ankle joint during stance: $46.0{\pm}12.9$ vs. $80.1{\pm}31.1$, between the knee and ankle joint during swing: $34.5{\pm}4.1$ vs. $37.6{\pm}3.1$, all p < 0.05). These results indicated that wearing knee brace affected joint angle and intra-limb coordination, but less affected gait features.

Effects of Combined Exercise on Injury Risk Factors of Lower Extremity during Landing (아동의 복합운동이 착지 시 하지 손상요인에 미치는 영향)

  • Ha, Sung-He;Yoo, Si-Hyun;Kim, Joo-Nyeon;Gil, Ho-Jong;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • The purpose of this study was to investigate the effect of combined exercise on injury risk factors of lower extremity during landing. Ten sports talented athletes participated in this study. Sports talented athletes participated in a combined exercise (sports talented exercise, coordination) for 16 weeks. A three-dimensional motion analysis was performed using eight infrared cameras (sampling rate of 100 Hz), one force plate, and electromyography system (sampling rate of 1000 Hz) during landing. Kinetic, and kinematics analysis including average impulsive force, angle of lower extremity, vertical stiffness, onset of muscle activation were calculated by Matlab2009a software. Paired t-test was performed at alpha=.05. The average impulsive force in landing phase was not statistically significant (t=-.748, p=.474). The hip joint angle was more decreased in post test compared to pre test (E1: t=2.682, p=.025, E2: t=5.609, p=.000, E3: t=2.538, p=.032). The knee joint (E1: t=-.343, p=.739, E2: t=1.319, p=.220, E3: t=.589, p=.570) and ankle joint (E1: t=.081, p=.937, E2: t=.784, p=.453, E3: t=.392, p=.704) angle were tended to decrease after combined exercise. The vertical stiffness was tended to decrease after combined exercise (t=1.972, p=.080). Onset of quadriceps femoris (t=.698, p=.503) and medial gastocnemius (t=1.858, p=.096) were tended to be faster than biceps femoris (t=-.333, p=.747) after combined exercise. Although thses findings were not statistically significant except on a hip joint angle, risk factors of lower extremity such as joint angle, vertical stiffness and onset of quadriceps femoris, medial gastrocnemius were positively changed after the combined exercise but an additional training for improved onset of biceps femoris would be required in the future.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF

A Control Method for designing Object Interactions in 3D Game (3차원 게임에서 객체들의 상호 작용을 디자인하기 위한 제어 기법)

  • 김기현;김상욱
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.322-331
    • /
    • 2003
  • As the complexity of a 3D game is increased by various factors of the game scenario, it has a problem for controlling the interrelation of the game objects. Therefore, a game system has a necessity of the coordination of the responses of the game objects. Also, it is necessary to control the behaviors of animations of the game objects in terms of the game scenario. To produce realistic game simulations, a system has to include a structure for designing the interactions among the game objects. This paper presents a method that designs the dynamic control mechanism for the interaction of the game objects in the game scenario. For the method, we suggest a game agent system as a framework that is based on intelligent agents who can make decisions using specific rules. Game agent systems are used in order to manage environment data, to simulate the game objects, to control interactions among game objects, and to support visual authoring interface that ran define a various interrelations of the game objects. These techniques can process the autonomy level of the game objects and the associated collision avoidance method, etc. Also, it is possible to make the coherent decision-making ability of the game objects about a change of the scene. In this paper, the rule-based behavior control was designed to guide the simulation of the game objects. The rules are pre-defined by the user using visual interface for designing their interaction. The Agent State Decision Network, which is composed of the visual elements, is able to pass the information and infers the current state of the game objects. All of such methods can monitor and check a variation of motion state between game objects in real time. Finally, we present a validation of the control method together with a simple case-study example. In this paper, we design and implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the most effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.