• 제목/요약/키워드: motion controlling

검색결과 339건 처리시간 0.033초

Device for Assisting Grasping Function

  • Jeong, Gu-Young;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.77.5-77
    • /
    • 2002
  • A mechanical device was developed for assisting the grasping function of a person whose fingers suffered cervical injury and thus are unable to grasp. This device is composed of a mechanical glove put on the user's hand and a muscle sensor to measure the activity of his or her muscle. The mechanical glove consists of a finger frame, a base and an air cylinder mounted on the base. With the kinematics carefully designed, the finger frame can achieve the grasping motion under the actuation of the air cylinder. For controlling this motion, an innovative sensor was developed to detect the user's motion intention. The sensor measures the change of the muscle stiffness...

  • PDF

Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계 (Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System)

  • 이운규;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.

Bonhoeffer - van der Pol 오실레이터 모델에서의 미소 파라미터 섭동에 의한 카오스 제어 (A study on Controlling chaos for Bonhoeffer-van der Pol oscillation model by small parameter perturbation)

  • 배영철
    • 한국전자통신학회논문지
    • /
    • 제1권1호
    • /
    • pp.49-55
    • /
    • 2006
  • Applied by periodic Stimulating Currents in Bonhoeffer -Van der Pol(BVP) model, chaotic and periodic phenomena occured at specific conditions. The conditions of the chaotic motion in BVP comprised 0.7182< $A_1$ <0.792 and 1.09< $A_1$ <1.302 proved by the analysis of phase plane, bifurcation diagram, and lyapunov exponent. To control the chaotic motion, two methods were suggested by the first used the amplitude parameter A1, $A1={\varepsilon}((x-x_s)-(y-y_s))$ and the second used the temperature parameterc, $c=c(1+{\eta}cos{\Omega}t)$ which the values of ${\eta},{\Omega}$ varied respectlvly, and $x_s$, $y_s$ are the periodic signal. As a result of simulating these methods, the chaotic phenomena was controlled with the periodic motion of periodisity. The feasibilities of the chaotic and the periodic phenomena were analysed by phase plane Poincare map and lyapunov exponent.

  • PDF

정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성 (The effect of aerodynamic characteristics on the insect wing tip trajectory in hovering flight)

  • 조헌기;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1441-1445
    • /
    • 2008
  • Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing kinematics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall effect.

  • PDF

Nonholonomic 모바일 로봇의 퍼지 PID제어 (A Fuzzy PID Control of Nonholonomic Mobile Robot)

  • 김도우;양해원;정원철;황영호;김홍필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2756-2759
    • /
    • 2000
  • In this paper. A PID motion controller based on the fuzzy concept is discussed for nonholonomic mobile robot. The difficulties in controlling such a Mobile robot vehicle lies in the fact that it usually has only two degrees of freedom for motion control in a tracking mode. It makes the control of speed and steering possible to decompose the error between the reference posture and the current posture. The Gyro compass is used to measure the position of robot. The proposed nonholonomic mobile robot is shown to follow the reference trajectory and compensate the dynamics. Simulation results are provided to validate the proposed controller. Experiments have been used to verify the effectiveness and robustness of the motion controller.

  • PDF

특이점 부근의 로봇운동을 효과적으로 제어하기 위한 새로운 방법 개발 (Development of A New Efficient Method for Controlling Robot Motion at and near Singularities)

  • 정원지;최은재;홍대선;서영교;홍형표
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.31-37
    • /
    • 2002
  • This paper presents a new motion control strategy for singularity avoidance in 6 DOF articulated robot manipulators, based on a speed limiting algorithm for joint positions and velocities. For a given task, the robot is controlled so that the joints move with acceptable velocities and positions within the reachable range of each joint by considering the velocity limit. This paper aims at the development of a new efficient method to control robot motion near and at singularities. The proposed method has focused on generating the optimal joint trajectory for a Cartesian end-effector path within the speed limit of each joint by using the speed limit avoidance as well as the acceleration/deceleration scheme. The proposed method was verified using MATLAB-based simulations.

방향성 매니퓰러빌리티를 이용한 주행 매니퓰레이터의 운동 계획 (Motion Planning for a Mobile Manipulator using Directional Manipulability)

  • 신동헌
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.95-102
    • /
    • 2005
  • The coordination of locomotion and manipulation has been the typical and main issue for a mobile manipulator. This is particularly because the solution for the control parameters is redundant and the accuracies of controlling the each joints are different. This paper presents a motion planning method for which the mobile base locomotion is less precise than the manipulator control. In such a case, it is appropriate to move the mobile base to discrete poses and then to move the manipulator to track a prescribed path of the end effector, while the base is stationary. It uses a variant of the conventional manipulability measure that is developed for the trajectory control of the end effector of the mobile manipulator along an arbitrary path in the three dimensional space. The proposed method was implemented on the simulation and the experiments of a mobile manipulator and showed its effectiveness.

다층 TLD를 적용한 부유식 풍력 발전기 축소 모형의 운동에 대한 수치적 고찰 (Numerical Investigation on Motion of the Scale Model of a Floating Wind Turbine Using Multilayer TLDs)

  • 하민호;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.621-627
    • /
    • 2014
  • In this paper, a possibility of controlling the motion of a floating wind turbine with the tuned liquid damper(TLD) is numerically investigated. First, motion of the scale model of a floating wind turbine without the TLD is predicted and its results are compared to the measured data. There are reasonably good agreements between two results, which confirms validity of the present numerical methods. Then, the effect of TLD is quantitatively assessed by comparing the prediction results for the floating wind turbine with and without the TLD. It is shown that the motion of the scale model derived by external forces can be reduced by using the TLD. On a basis of this result, a multi-layer TLD is proposed to generate larger reaction force of the TLD at the fixed target frequency. The motions of the scale model with the multi-layer TLDs are computed and compared with that of the single-layer TLD. It is shown that the multi-layer TLD generate stronger reaction force and thus more reduce the motion of the floating body than the single-layer TLD.

Dynamics Analysis of a Small Training Boat ant Its Optimal Control

  • Nakatani, Toshihiko;End, Makoto;Yamamoto, Keiichiro;Kanda, Taishi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes dynamics analysis of a small training boat and a new type of ship's autopilot not only to keep her course but also to reduce her roll motion. Firstly, statistical analysis through multi-variate auto regressive model is carried out using the real data collected from the sea trial on an actual small training boat Sazanami after the navigational system of the boat was upgraded. It is shown that the roll motion is strongly influenced by the rudder motion and it is suggested that there is a possibility of reducing the roll motion by controlling the rudder order properly. Based on this observation, a new type of ship's autopilot that takes the roll motion into account is designed using the muti-variate modern control theory. Lastly, digital simulations by white noise are carried out in order to evaluate the proposed system and a typical result is demonstrated. As results of simulations, the proposed autopilot had good performance compared with the original data.

  • PDF

다양한 골격의 효과적인 제어가 가능한 예제 기반의 모션 생성과 응용 (Example Based Motion Generation and its Applications with Efficient Control for Arbitrary Morphologies)

  • 정유진;강경규;김동호
    • 한국게임학회 논문지
    • /
    • 제9권1호
    • /
    • pp.127-134
    • /
    • 2009
  • 본 논문에서는 사용자의 대응정보를 반영하여 소스 캐릭터와 다른 골격을 가진 타깃 캐릭터의 움직임을 생성하는 방법에 대하여 제안한다. 본 시스템을 통해 사용자는 소스 캐릭터의 제어할 부위와 타깃 캐릭터의 제어될 부위를 대응하여 타깃 캐릭터의 움직임을 생성할 수 있다. 우리는 골격에 제한 없이 타깃 캐릭터의 자세생성을 위해 대응자세의 쌍을 예제로 이용한다. 그리고 뼈의 수에 상관없이 자유롭게 관절의 대응을 제공하기 위해 방향벡터를 사용하여 관절의 구조를 간략화 한다. 최종적인 자세는 예제들의 가중치 합을 통해 생성된다. 본 논문의 실험적 결과를 통해 시스템이 실시간으로 골격이 다른 타깃 캐릭터의 기본적인 움직임을 생성하면서 또한 사용자가 지정한 부위의 외형적 움직임을 생성할 수 있음을 보인다.

  • PDF