• Title/Summary/Keyword: motion controlling

Search Result 339, Processing Time 0.032 seconds

Anti-sway System for Automatic Container Terminal (자동화 컨테이너 터미널용 Anti-Sway 시스템)

  • 박경택;박찬훈;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.428-431
    • /
    • 2002
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. ropes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And main schemes are introduced and explained briefly.

  • PDF

A Study on Sway Control of Containers of Yard Crane (야드 크레인의 컨테이너 흔들림 제어에 관한 연구)

  • 박찬훈;박경택;김두형;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.64-71
    • /
    • 2000
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

A Study on Sway Control of Containers of Yard Crane (야드 크레인의 컨테이너 흔들림 제어에 관한 연구)

  • 박찬훈;박경택;김두형;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.143-151
    • /
    • 2000
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

Fast Processing System for Motion Control of Multi-body Robots (다관절 로봇용 고속 제어보드 개발 및 제어)

  • Sim, Jae-Ik;Kwon, O-Hung;kim, Tae-Sung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.951-956
    • /
    • 2007
  • This paper suggests a high-speed control method which is suitable for multi-joint robots using a real-time stand-alone controller for general-purpose. The fast processing controller consists of a PCI Interface Board and 2-axe PWM drivers. The PCI Interface Board consists of 32-channel PWM output ports, 32-channel Encoder Counters, 32-channel A/D Converters and 48-channel Digital I/O ports, and all the I/O data transmissions are completed within 1ms. And The 2-axe PWM driver can be redesigned easily in order to embed in each link. Experimental implementations show that the high-speed control method can be used for the real-time control which is essential to controlling of multi-body robots such as humanoid robots. Especially, it is efficient for realizing the model-based motion control in demand of much calculation time by the high I/O communication speed.

  • PDF

Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control (컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어)

  • Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

Fuzzy Control of a Sway and Skew of a Spreader by Using Four Auxiliary Cables

  • Lee, Jeong-Woo;Kim, Doo-Hyeong;Park, Kyeong-Taik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1723-1728
    • /
    • 2005
  • This article describes the fuzzy control of the 3-dimensional motion of the container cranes used in dockside container terminals. The container is suspended by four flexible cables via spreader, and due to the disturbances such as the wind and acceleration of cranes, the container undergoes translational(sway) and rotational position errors. And due to the uncertainty of weight and rotational inertia, accurate position control of container crane is difficult to realize. This paper, based on the analysis of 3-dimensional dynamics of container moving systems, describes the design of the fuzzy controller, which does not require the computation time to optimize the distribution of cable tension. The developed controller is shown effective in controlling the container position in the presence of gust and parameter uncertainties.

  • PDF

Research of Controlled Motion of Dual Fingers with Soft-Tips Grasping (Soft-Tip을 가진 Dual Finger의 파지운동제어에 관한 연구)

  • 박경택;양순용;한현용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.670-673
    • /
    • 2000
  • This paper attempt analysis and computer simulation of dynamics of a set of dual multi-joint fingers with soft-deformable tips which are grasping. Firstly, a set of differential equation describing dynamics of the fingers and object together with geometric constraint of tight area-contacts is formulated by Euler-Lagrange's formalism. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Finally, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

A Study on Control of Stable Grasping Motion for Finger Robot (손가락 로봇의 안정 파지 운동 제어에 관한 연구)

  • Choi, Jong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.428-437
    • /
    • 2006
  • This paper attempts to derive and analyze the dynamic system of grasping a rigid object by means of two multi-degrees-of-freedom robot flngers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper. the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

Anti-Sway System for Automated Crane (자동화 크레인을 위한 흔들림 방지 시스템)

  • 박찬훈;김두형;박경택
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes arc passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. :opes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-sidc container cranes. In this paper, we derive cquatlons of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

Velocity profile generation methods for industrial robots and CNC machine tools

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.306-311
    • /
    • 1992
  • We propose software algorithms which provide the characteristics of acceleration/deceleration essential to high dynamic performance at the transient state where industrial robots or CNC machine tools start and stop. The path error, which is one of the most significant factors in performance evaluation of industrial robots and CNC machine tools, is analyzed for linear, exponential, and parabolic acceleration/deceleration algorithms in case of circular interpolation. The analysis shows that the path error depends on the acceleration/deceleration routine and the servo control system. In experiments, the entire control algorithm including the proposed acceleration/deceleration algorithms is executed on the motion control system with a floating point digital signal processor(DSP) TMS320C30 as a CPU. The experimental results demonstrate that the proposed algorithms are very effective in controlling axes of motion of industrial robots or CNC machine tools with the desired characteristics.

  • PDF