• Title/Summary/Keyword: motion capture technology

Search Result 185, Processing Time 0.024 seconds

Realtime 3D Human Full-Body Convergence Motion Capture using a Kinect Sensor (Kinect Sensor를 이용한 실시간 3D 인체 전신 융합 모션 캡처)

  • Kim, Sung-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.189-194
    • /
    • 2016
  • Recently, there is increasing demand for image processing technology while activated the use of equipments such as camera, camcorder and CCTV. In particular, research and development related to 3D image technology using the depth camera such as Kinect sensor has been more activated. Kinect sensor is a high-performance camera that can acquire a 3D human skeleton structure via a RGB, skeleton and depth image in real-time frame-by-frame. In this paper, we develop a system. This system captures the motion of a 3D human skeleton structure using the Kinect sensor. And this system can be stored by selecting the motion file format as trc and bvh that is used for general purposes. The system also has a function that converts TRC motion captured format file into BVH format. Finally, this paper confirms visually through the motion capture data viewer that motion data captured using the Kinect sensor is captured correctly.

Experimental validation of smartphones for measuring human-induced loads

  • Chen, Jun;Tan, Huan;Pan, Ziye
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.625-642
    • /
    • 2016
  • The rapid technology developments in smartphones have created a significant opportunity for their use in structural live load measurements. This paper presents extensive experiments conducted in two stages to investigate this opportunity. Shaking table tests were carried out in the first stage using selected popular smartphones to measure the sinusoidal waves of various frequencies, the sinusoidal sweeping, and earthquake waves. Comparison between smartphone measurements and real inputs showed that the smartphones used in this study gave reliable measurements for harmonic waves in both time and frequency domains. For complex waves, smartphone measurements should be used with caution. In the second stage, three-dimensional motion capture technology was employed to explore the capacity of smartphones for measuring the movement of individuals in walking, bouncing and jumping activities. In these tests, reflective markers were attached to the test subject. The markers' trajectories were recorded by the motion capture system and were taken as references. The smartphone measurements agreed well with the references when the phone was properly fixed. Encouraged by these experimental validation results, smartphones were attached to moving participants of this study. The phones measured the acceleration near the center-of-mass of his or her body. The human-induced loads were then reconstructed by the acceleration measurements in conjunction with a biomechanical model. Satisfactory agreement between the reconstructed forces and that measured by a force plate was observed in several instances, clearly demonstrating the capability of smartphones to accurately assist in obtaining human-induced load measurements.

3D Motion Capture based Physical Fitness using Full Body Tracking Suit

  • Imran Ghani;Emily Hattman;David T. Smith;Muhammad Hasnain;Israr Ghani;Seung Ryul Jeong
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.47-56
    • /
    • 2023
  • This paper presents an approach to exercise that utilizes motion capture through the Rokoko Smart Suit. With the emergence of Covid-19, physical fitness levels have declined due to restrictions on in-person fitness classes and gym closures. To maintain physical activity, many individuals have turned to mobile applications and streaming videos. However, home workouts often lack the motivation and experience found in gyms, classes, or community centers, particularly with the presence of coaches and instructors. Additionally, instructors find it challenging to convey precise postures to their online students, and vice versa. To address this issue, the researchers propose the use of a full-body tracking suit like the Rokoko Smart Suit, which enables instructors to present a more realistic approach to physical activity. The Rokoko Smart Suit offers a 3D view of the instructor, eliminating the limitations of camera scope when streaming on platforms like Zoom or MS Teams. This technology enhances the at-home workout experience, and the incorporation of 3D virtual reality features can further elevate the realism of a workout.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Research of Mobile 3D Dance Contents Construction Using Motion Capture System (모션캡처 시스템을 이용한 모바일 3D 댄스 콘텐츠 제작 연구)

  • Kim Nam-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.98-107
    • /
    • 2006
  • By improving performance of mobile machine(3D engine, 3D accelerator chip set, etc) and developing wireless network technology, a demand for actual contents of users is being increased rapidly. But, there are some difficulties yet for the speedy development of actual contents because of the limitation of development resources that is dependent on each mobile device's different performance. In general, much of the animated character-creation work for mobile environment is still done manually by experienced animator with the method of key frame processing. However, it needs a lot of time and more costs for creating motion. Additionally, it is possible to cause a distortion of motion. In this paper, I solved the difficulties by using a optical motion capture system, it was able to acquire accurate motion data more easily and quickly, and then it was possible to make 3D dance contents efficiently. Also, I showed techniques of key reduction and controlling frame number for using huge amounts of motion capture data in mobile environment which requires less resources. In making 3D dance contents, using an optical motion capture system was verified that it was more efficient to make and use actual-reality contents by creating actual character motion and by decreasing processing time than existing method.

  • PDF

A Study on the real motion capture of 3D Game character and classificatory proposal the type, the shapes of 3D character animation (3D 게임캐릭터의 실사 움직임(Real working)과 3D 캐릭터 애니메이션의 종류별, 형태별 모델 분류 제안)

  • Yun, Hwang-Rok;Kyung, Byung-Pyo;Lee, Dong-Lyeor;Shon, Jong-Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.269-272
    • /
    • 2006
  • Game industry is one of the most popular sector in the world cultural industries in the digital era. 2D and 3D Animation with development of computer technology it. Because Animation needs to show real motion image. The computer hardware and software technique quick change it leads and 2D and 3D the animation is the tendency which provides the growth which is infinite. But recently Game graphic design have a trend 3D Game that is absorbed and easy handling. 2D Game Character is changing to 3D Game Character more and more. This thesis have significant the real motion capture of 3D Game Character and the types, the shapes of 3D Game Character animation. First of all this thesis will define about 3D Game Character as well it will be show examples of real motion capture also it will proposal data of real motion capture. Therefore it will be bring the high technology Animation industry with Digital Contents industry. also hope for the growth of Game Character Animation process and 3D Game Character Animation in Game industry as well contents industry.

  • PDF

Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes (재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현)

  • Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • In this paper, we present an inertial sensor-based motion capturing system to measure and analyze whole body movements. This system implements a wireless AHRS(attitude heading reference system) we developed using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. We performed 3D motion capture using the quaternion data calculated. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE of 2.56 degree. The results suggest that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limbs or gait analysis during the post-stroke recovery process.

  • PDF

Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training (균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가)

  • Kim, ChoongYeon;Jung, HoHyun;Jeon, Seong-Cheol;Jang, Kyung Bae;Chun, Keyoung Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

Development of Frozen Shoulder Rehabilitation Robot Based On Motion Capture Data (모션 캡쳐 데이터 기반의 오십견 재활 보조용 로봇의 개발)

  • Yang, Un-Je;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1017-1026
    • /
    • 2012
  • In this study, an exoskeleton-type robot is developed to assist frozen shoulder rehabilitation in a systematic and efficient manner for humans. The developed robot has two main features. The first is a structural feature: this robot was designed to rehabilitate both shoulders of a patient, and the three axes of the shoulder meet at one point to generate human-like ball joint motions. The second is a functional feature that is divided into two rehabilitation modes: the first mode is a joint rehabilitation mode that helps to recover the shoulder's original range of motion by moving the patient's shoulder according to patterns obtained by motion capture, and the second mode is a muscle rehabilitation mode that strengthens the shoulder muscles by suitably resisting the patient's motion. Through these two modes, frozen shoulder rehabilitation can be performed systematically according to the patient's condition. The development procedure is described in detail.