• Title/Summary/Keyword: motion accuracy measurement

Search Result 192, Processing Time 0.027 seconds

Hyperbolic Location Estimation of Aircraft with Motion in a Plane (평면 비행중인 항공기의 쌍곡선 위치 추정 연구)

  • Jo, Sanghoon;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2013
  • Multilateration(MLAT) may complement secondary surveillance radar and also act as a real-time backup for the ADS-B system. This System is using time difference of arrival (TDOA) and based on triangulation principle. Each TDOA measurement defines a hyperbola describing possible aircraft locations. The accuracy in MLAT system depends on the positional relationship of the receiver and aircraft. There are various algorithms to localize aircraft based on TOA estimation. In this paper, we use least square method and extended Kalman filter and compare their results. Study results show that the extend Kalman filter provides a better performance than the least square method.

Dynamic Analysis of The Knee Brace for Ski Injuried Patient (스키환자용 특수 슬관절보조기의 동특성 해석)

  • 최진영;김명회;장대진;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.893-898
    • /
    • 2003
  • A new type of the Expanded Knee brace was developed to measure the human knee joint. This instrument was composed of six parts, four arranged for two hinge joints and two pin joint , and two hinge for the expanded system. With a developed instrument, the experimental results obtained the data of Accelerometer, the experimental results obtained of the data FEM, the experimental results obtained the data of Motion Analysis and Force platform. Compared to earlier developed sports type knee brace, new instrument shows its convenience in application and accuracy in measurement.

  • PDF

Development of Smart Healthcare Scheduling Monitoring System for Elderly Health Care

  • Cho, Sooyong;Lee, Sang Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2018
  • Health care has attracted a lot of attention, recently due to an increase in life expectancy and interest in health. Various biometric data of the user are collected by using the air pressure sensor, gyro sensor, acceleration sensor, and heart rate sensor to perform the Smart Health Care Activity Tracker function. Basically, smartphone application is made and tested for biometric data collection, but the Arduino platform and bio-signal measurement sensor are used to confirm the accuracy of the measured value of the smartphone. Use the Google Maps API to set user goals and provide guidance on the location of the user and the points the user wants. Also, the basic configuration of the main UI is composed of the screen of the camera, and it is possible for the user to confirm the forward while using the application, so that accident prevention is possible.

Optimal Design Techniques of the Ultra Precision Cutting Unit through using Optimized Bearing positioning and Latest Lubrication Systems (최적베어링위치결정과 최신의 윤활 시스템을 적용한 초정밀 절삭 유닛의 최적설계기술)

  • Park, Dae-Kwang;Cho, Young-Tae;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.15-22
    • /
    • 2014
  • With a conventional positioning apparatus, it is very difficult simultaneously to achieve desired driving ranges and precision levels at the sub-micrometer level. Generally, a lead screw and friction drive have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

원통형 커패시턴스 센서를 이용한 초정밀 공기 주축의 회전오차 측정

  • 김해일;박상신;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.637-642
    • /
    • 1995
  • For measuring the error motion of ultra-precision spindle, eliminating the geometric errors is a must. Unless it is achieved, geometric errors will be dominant in data. Here, the roundness error and alignment error between spindle and sensor are to be removed. That's because typical error range of such spindle is muchless than geometric one. A capacitive transducer of cylidricalshape was developed, which takes full advantage of the spatial-averaging effect by using large area compared tpo the geometric error. This idea was first proposed by Chapman and here it is modified for better performance with nomical gap of 50 .mu. m and with newly designed guards which encompass the respective sensor to rectify the electrical field distribution in good shape. The measurement system is made to get the orbit of Ultra-Precision Air Spindle which is supposed to have its runout under 1 .mu. m. The Calibration data of this sensor is presented and the spindle orbit from 2000rpm to 5500rpm is showed. It is quite reasonable to use this sensor in the range of 60 .mu. m with an accuracy of several tens of nm.

A Study on Position Recognition of Bucket Tip for Excavator (굴삭기의 버킷 끝단 위치인식에 관한 연구)

  • Kim, Jae Hoon;Bae, Jong Ho;Jung, Woo Yong
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • The accurate calculation of bucket tip position has a large influence on showing the motion of an excavator on the display device of the excavator and controlling the excavator automatically. It is generally known that Inertial Measurement Unit (IMU) sensors are more accurate than accelerometer-based sensors while the boom, arm or bucket moves because additional forces beyond gravity add additional acceleration to the sensors. To prove the accuracy difference between the two types of sensors, a position recognition system using an accelerometer-based sensor and an IMU sensor is implemented on the excavator. The experimental results show that the system using the IMU sensor significantly reduces the position recognition error while bucket moves and additional force beyond gravity exists.

Representation of small passenger ferry maneuvering motions by practical modular model

  • Wicaksono, Ardhana;Hashimoto, Naoya;Takahashi, Tomoyasu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-64
    • /
    • 2021
  • Maneuvering motions of a ship in calm water are studied through the concept of MMG model. Governing forces are defined by the use of available empirical formulae that require only main ship particulars as input variables. In order to validate the calculation tool, a full-scale sea experiment was carried out in Osaka Bay using a 17-m twin-screw passenger ferry. Test execution and data measurement were performed through the utilization of an autopilot control unit and satellite compass. The result of a straight running test confirms the acceptable accuracy in addressing the surge motion problem. Reasonable agreement between simulation and experiment is also confirmed for 5°/5° and 10°/10° zig-zag tests despite the strong environmental disturbance. The current model can generally represent the subject ship maneuvering motions and is promising for the application to other ship hulls.

Development of an Automatic Transverse and Longitudinal Road Profile Measurement System (노면 종.횡단 요철 자동 측정 시스템 개발)

  • Eom, Jung-Hyun;Seo, Dong-Sun;Huh, Woong;Roo, Myong-Chan;Kim, Joon-Bum
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.75-84
    • /
    • 2001
  • The reliable data relating to the condition of road surface is of increasing importance to deliver the road condition to driver and road management authority. This paper describes the development of a new high-speed. automatic, road data collection system, which collects the longitudinal road data with ${\sim}30cm$ interval covering full width of the road at 100km/h speed. The system calculates the international roughness index (IRI) from the collected data and displays the IRI and road profile data on the screen. To develope the system, we implement an optical range finder, advanced distance and motion detectors, and signal processing and display modules. The measurement accuracy of the system at 70km/h operation speed shows ${\pm}0.1m/km$ in the IRI for the standard road. To confirm the performance of the developed system, we also measure the IRI of a deployed highway road and compare the results with a conventional system and human eye measurement results.

  • PDF

A Fitness Game for Home Training with MediaPipe Technology (미디어 파이프 기술을 이용한 홈트레이닝용 피트니스 게임)

  • Woo-Jeong Yang;Seon-Min Moon;Ji-Hyang Heo;Seong-Yong Ohm
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.715-720
    • /
    • 2024
  • This paper proposes a fitness service designed to effectively meet the increased demand for home training due to the COVID-19 pandemic. The service is a fitness game developed using MediaPipe technology and the Unity engine, featuring the integration of physical motion recognition to enable simultaneous exercise and gameplay (battles) in real time. Users can receive real-time feedback on their movements while playing the game, and after the game, they can review detailed records of their exercise sessions or check their workout history in a calendar format. Notably, by allowing users to collect various monsters as game rewards, the service encourages a more proactive approach to exercising different body parts, thereby enhancing both the effectiveness and sustainability of their workouts.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF