• Title/Summary/Keyword: motion accuracy measurement

Search Result 192, Processing Time 0.021 seconds

Measurement of Motion Accuracy by Two-dimensional Probe on NC Machine Tools -2nd Report, Measurement of the Linear Motion Accuracy- (2차원 프로브에 의한 NC공작기계의 운동 정밀도 측정 -제2보 직선운동 정밀도 측정-)

  • JEON, Eon Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi;KAKUTA, Junichro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.15-21
    • /
    • 1997
  • This paper presented a linear motion accuracy by using two-dimensional probe with the master block and the square for NC machine tools. This measuring system could be measured motion error due to numerical control system. The results of measurement and simulation for motion error were similar, and so, this system had enough accuracy to measure a linear motion accuracy for NC machine tools. The experimental results are as follows. 1. This measuring system could be measured motion error due to mumerical control system. 2. The results of measurement and simulation for motion error were similar. 3. This measuring system had enough accuracy to measure a linear motion accuracy for NC machine tools.

  • PDF

Measurement of motion accuracy by two-dimensional probe on NC machine tools -1st report, Measurement of the circular motion accuracy- (2차원 프로브에 의한 NC공작기계의 운동정밀도 측정 -제 1보 원호보간운동 정밀도 측정-)

  • JEON, Eon-Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1996
  • This paper presented a new measuring system to improve circular motion accuracy by using two-dimensonal probe and master ring for NC machine tools. This measuring system reduced the circular motion error conspicuously by eliminating the influence of the acceleration/deceleration range and compensating the friction force whose influences were significant while measuring the motion. Experimental results show that this system had enough accuracy to measure a circular motion for NC machine tools, compared with the circular test method and the r .theta. method.

  • PDF

Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact (광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상)

  • Huh, Young-Jung;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.

Real-time 3-Dimensional Measurement of Lumbar Spine Range of Motion using a Wireless Sensor (무선 센서를 활용한 요추 가동 범위의 실시간 3차원 측정)

  • Jeong, Woo-Hyuk;Jee, Hae-Mi;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.713-718
    • /
    • 2012
  • Lumber spine range of motion has been used to measure of physical and functional impairment by various tools from a ruler to 3D kinematic devices. However, pre-existing tools have problems in either movement or accuracy and reliability limitations. Accurate devices are limited by fixed space whereas simple devices are limited in measuring complex movements with less accuracy. In order to solve the location, movement and accuracy limitations at once, we have developed a novice measurement device equipped with accelerometer sensor and gyroscope sensor for getting three-dimensional information of motion. Furthermore, Kalman filter was applied to the algorithm to improve accuracy. In addition, RF wireless communication was added for the user to conveniently check measured data in real time. Finally, the measurement method was improved by considering the movement by a reference point. An experiment was conducted to test the accuracy and reliability of the device by conducting a test-retest reliability test. Further modification will be conducted to used the device in various joints range of motion in clinical settings in the future.

Improving Accuracy of Measurement of Rigid Body Motion by Using Transfer Matrix (전달 행렬을 이용한 강체 운동 측정의 정확도 개선)

  • 고강호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-259
    • /
    • 2002
  • The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

  • PDF

Development of plane Motion Accuracy Measurement Unit of NC Lathe (NC 선반의 정면 운동정도 측정장치의 개발)

  • 김영석;한지희;정정표;윤원주;송인석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.101-106
    • /
    • 2004
  • Measurements of linear motion accuracy for one axis of NC lathe have achieved with laser interferometer system, but measurement of plane motion accuracy for two axes on zx-plane of NC lathe have not achieved with the above system. Therefore in this study, measuring unit system is organized using two optical linear scales in order to acquire error. data during of plane motion of ATC(Automatic Tool Change.) of NC lathe by reading zx-plane coordinates. Two optical linear scales of measuring unit are fixed on zx-plane of NC lathe, and moving part of the scales are fixed to the ATC and then error motion data of z, x-coordinates of the ATC are received from the scales through the PC counter card inserted in computer at constant time intervals using tick pulses coming out from computer. And then, error motion data files acquired from measuring are saved in computer memory and the aspect of plane motion are modeled to plots, and range of the error data, means. average deviations, and standard deviations etc. are calculated by means of statistical treatments using computer programs.

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.112-118
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.31-37
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

An Alternating Motion Technique Using Linear Variable Differential Transformers (선형변이 차동변압기를 이용한 왕복운동 계측기법)

  • 최주호;김윤겸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1073-1077
    • /
    • 1996
  • This paper presents a recoil and counter recoil(R&CR) motion measurement method using linear variable differential transformers(LVDT). The output of a LVDT is obtained from the differential voltage of the 2nd transformers. As a sensor core is attached at the motion body, the output is directly proportional to the core motion. Displacement, velocity and acceleration are measure from the core length. With a comparison between the measurement result and the known value which is obtained by the precision steel tape, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Influence of Heart Rate and Innovative Motion-Correction Algorithm on Coronary Artery Image Quality and Measurement Accuracy Using 256-Detector Row Computed Tomography Scanner: Phantom Study

  • Jeong Bin Park;Yeon Joo Jeong;Geewon Lee;Nam Kyung Lee;Jin You Kim;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Objective: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. Materials and Methods: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50-120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). Results: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). Conclusion: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.