• Title/Summary/Keyword: motion accuracy

Search Result 1,631, Processing Time 0.026 seconds

Developement of Measuring Units of circular Motion Accuracy on NC Lathe (NC선반의 원 운동정도 측정장치의 개발)

  • 김영석;김재열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2001
  • It is very important to test circular motion accuracy of NC machine tools as it affects all other machines machined by them in industries. In this paper, it has become possible to detect errors of linear displacement of radial directions for circle tar motion accuracy test using newly assembled magnetic type of linear scale so called Magnescale ball-bar system. It has also organized computer program systems using tick pulses come out from computer for getting error motion data at colt start time interval in circular motion test on NC lathe. Error data gotten from test is expressed to plots and analysed to numerics by various statistical treatments.

  • PDF

Selective Multiresolution Motion Estimation Using Half-pixel Accuracy and Characteristics of Motion Vectors (반화소 단위 움직임 추정 및 움직임 벡터의 특성을 이용한 선별적인 계층적 움직임 추정)

  • 권성근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1813-1820
    • /
    • 2000
  • In this paper we proposed an efficient multiresolution motion estimation(MRME) algorithm using half-pixel accuracy motion estimation (HPAME) and characteristics of motion vectors in the baseband. Conventional MRME method needs exact motion vectors in the baseband because those are used as initial motion vectors in higher frequency subbands. Therefore the proposed method uses HPAME to estimate the motion vectors exactly in the baseband. Based on the characteristics of these motion vectors the motion vectors in the higher frequency subbands are selectively estimatied. That is motion vectors in the higher frequency subbands are estimated only for the blocks which have the half-pixel accuracy motion vectors in the baseband. In the proposed method by using HPAME in the baseband and selective motion estimation in the higher frequency subbands we can obtain reconstructed image with the similar quality with the conventional method though we reduce the computational complexity and the bit rate considerably.

  • PDF

A Study on the Rotation Accuracy According to Unbalance Variation of High Precision Spindle Unit for Machine Tool (고정밀 회전체의 불평형 변동에 따른 회전정밀도 영향에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-181
    • /
    • 2012
  • The spindle unit is a core part in high precision machine tool. Rotation accuracy of spindle unit is needed for high dignity cutting and improving the performance of machine tool. However, there are many factors to effect to rotational error motion(rotation accuracy). This study studied how rotational error motion is variation when unbalance amount is variation. Rotation accuracy of initial spindle unit is decided depending on parts and assembly such as bearing. When it is rotation, vibration and noise is appeared depending on volume of unbalance amount, so it works to decrease unbalance amount. The purpose of the study tests that unbalance amount how much effects to initial rotation condition. The result of the study shows that accuracy of parts and assembly is highly necessary to reach high rotation accuracy and unbalance amount hardly effects to initial rotation accuracy. However, it shorten spindle's life because vibration and noise is increasing by increasing unbalance amount and we can expect situation that rotation accuracy is falling by long time operation.

Developement of Measuring System of Circular Motion Accuracy in Machining Center (머시닝 센터에서 원운동정도 측정시스템의 개발)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.58-66
    • /
    • 1995
  • It is very important to test motion accuracy and performance of NC machine tools as they affect that of all other machines machined by them in industry. In this paper, in has become possible to detect errors of linear displacement of radial direction for circular motion test using newly assembled magnetic type of linear scales so called Magnescale ball bar system, and to calculate time interval getting error motion data and revolution angle of circular motion in machining center using tick pulses come out from computer. And a set of error data gotten from test is expressed to a plot by computer treatment and to numerics of error motion by statistical treatment and results of test are compared with those of Renishaw ball bar system.

  • PDF

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.62-69
    • /
    • 2002
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, corrective machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysis method proposed in the previous paper. These processes can be iterated until the analized motion errors are satisfied with target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail, after corrective machining, are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm is effective to acquire the corrective machining information to improve the accuracy of hydrostatic table.

Development of plane Motion Accuracy Measurement Unit of NC Lathe (NC 선반의 정면 운동정도 측정장치의 개발)

  • 김영석;한지희;정정표;윤원주;송인석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.101-106
    • /
    • 2004
  • Measurements of linear motion accuracy for one axis of NC lathe have achieved with laser interferometer system, but measurement of plane motion accuracy for two axes on zx-plane of NC lathe have not achieved with the above system. Therefore in this study, measuring unit system is organized using two optical linear scales in order to acquire error. data during of plane motion of ATC(Automatic Tool Change.) of NC lathe by reading zx-plane coordinates. Two optical linear scales of measuring unit are fixed on zx-plane of NC lathe, and moving part of the scales are fixed to the ATC and then error motion data of z, x-coordinates of the ATC are received from the scales through the PC counter card inserted in computer at constant time intervals using tick pulses coming out from computer. And then, error motion data files acquired from measuring are saved in computer memory and the aspect of plane motion are modeled to plots, and range of the error data, means. average deviations, and standard deviations etc. are calculated by means of statistical treatments using computer programs.

Measurement of motion accuracy by two-dimensional probe on NC machine tools -1st report, Measurement of the circular motion accuracy- (2차원 프로브에 의한 NC공작기계의 운동정밀도 측정 -제 1보 원호보간운동 정밀도 측정-)

  • JEON, Eon-Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1996
  • This paper presented a new measuring system to improve circular motion accuracy by using two-dimensonal probe and master ring for NC machine tools. This measuring system reduced the circular motion error conspicuously by eliminating the influence of the acceleration/deceleration range and compensating the friction force whose influences were significant while measuring the motion. Experimental results show that this system had enough accuracy to measure a circular motion for NC machine tools, compared with the circular test method and the r .theta. method.

  • PDF

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 2004
  • For improving the motion accuracy of hydrostatic tables, a corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. The reverse analysis is performed firstly to estimate the rail profile from the measured linear and angular motion error, in the algorithm. For the next step, the corrective machining information is obtained based upon the estimated rail pronto. Finally, the motion errors on the correctively machined rail are analyzed by using the motion error analysis method. These processes are iterated until the analyzed motion errors are satisfactory within the target accuracy. In order to verify the validity of the algorithm theoretically, the motion errors calculated by the estimated rail after the corrective machining process, are compared with those by the true rail which is previously assumed as the initially measured value. The motion errors calculated using the estimated rail show good agreement with the assumed values, and it is shown that the algorithm is effective in acquiring the corrective machining information to improve the accuracy of hydrostatic tables.

Accuracy Simulation of the Precision Linear Motion Systems (직선운동 시스템의 정밀도 시뮬레이션 기술)

  • Oh, Jeong-Seok;Khim, Gyung-Ho;Park, Chun-Hong;Chung, Sung-Jong;Lee, Sun-Kyu;Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.275-284
    • /
    • 2011
  • The accuracy simulation technology of linear motion system is introduced in this paper. Motion errors and positioning errors are simulated using informations on the design parameters of elements of linear motion system. 5 Degree-of-freedom motion error analysis algorithm utilizing the transfer function method and positioning error analysis algorithm which are main frame of accuracy simulation are introduced. Simulated motion errors are compared with experimental results for verifying the effectiveness. Then, using the proposed algorithms, simulation is performed to investigate the effects of ballscrew and linear motor on the motion errors. Finally, the influence of feedback sensor position on the positioning error is also discussed.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.