• Title/Summary/Keyword: motion

Search Result 22,522, Processing Time 0.041 seconds

The Motion Transformation of Character Included Contrained Optimization Problem (구속조건을 고려한 캐릭터의 움직임 변경)

  • 이지홍;이원희;조인성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.223-226
    • /
    • 2002
  • If one can easily modify the existing motion data to a new motion in making an animation movie, he can save a lot of time for graphic design. To implement this kind of system, we propose a PC-based system composed of low cost commercial animation tool (3D Studio Max) for visualization of the animation and motion editing module that handles optimization process during the motion transform. Researchers studying advanced motion transform techniques only have to focus on the mathematical manipulation of the motion data

  • PDF

Efficient Motion Refinement Algorithm based on ASW for Reduced Frame-Rate Video Transcoder (시간해상도 감소 트랜스코딩을 위한 ASW움직임벡터 정밀화 알고리즘에 관한 연구)

  • 서동완;권혁민;최윤식
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2044-2047
    • /
    • 2003
  • In this paper, we propose efficient motion vector refinement algorithm for frame-rate reduction transcoding. The proposed algorithm is to set the search range for motion refinement based on the incoming motion vector. The algorithm calculates the importance of motion vector of the skipped frame and then selects two motion vector to set search range. Through this process, we determine the accuracy of incoming motion vector and set the search range lot refinement adaptively by means of the accuracy. In experiments, we show efficiency of our algorithm to reduce the search points for refinement.

  • PDF

Kinematic and Dynamic Analyses of Human Arm Motion

  • Kim, Junghee;Cho, Sungho;Lee, Choongho;Han, Jaewoong;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.138-148
    • /
    • 2013
  • Purpose: Determining an appropriate path is a top priority in order for a robot to maneuver in a dynamically efficient way especially in a pick-and-place task. In a non-standardized work environment, current robot arm executes its motion based on the kinematic displacements of joint variables, though resulting motion is not dynamically optimal. In this research we suggest analyzing and applying motion patterns of the human arm as an alternative to perform near optimum motion trajectory for arbitrary pick-and-place tasks. Methods: Since the motion of a human arm is very complicated and diverse, it was simplified into two links: one from the shoulder to the elbow, and the other from the elbow to the hand. Motion patterns were then divided into horizontal and vertical components and further analyzed using kinematic and dynamic methods. The kinematic analysis was performed based on the D-H parameters and the dynamic analysis was carried out to calculate various parameters such as velocity, acceleration, torque, and energy using the Newton-Euler equation of motion and Lagrange's equation. In an attempt to assess the efficacy of the analyzed human motion pattern it was compared to the virtual motion pattern created by the joint interpolation method. Results: To demonstrate the efficacy of the human arm motion mechanical and dynamical analyses were performed, followed by the comparison with the virtual robot motion path that was created by the joint interpolation method. Consequently, the human arm was observed to be in motion while the elbow was bent. In return this contributed to the increase of the manipulability and decrease of gravity and torque being exerted on the elbow. In addition, the energy required for the motion decreased. Such phenomenon was more apparent under vertical motion than horizontal motion patterns, and in shorter paths than in longer ones. Thus, one can minimize the abrasion of joints by lowering the stress applied to the bones, muscles, and joints. From the perspectives of energy and durability, the robot arm will be able to utilize its motor most effectively by adopting the motion pattern of human arm. Conclusions: By applying the motion pattern of human arm to the robot arm motion, increase in efficiency and durability is expected, which will eventually produce robots capable of moving in an energy-efficient manner.

The Application of Dynamic Acquisition with Motion Correction for Static Image (동적 영상 획득 방식을 이용한 정적 영상의 움직임 보정)

  • Yoon, Seok-Hwan;Seung, Jong-Min;Kim, Kye-Hwan;Kim, Jae-Il;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • Purpose: The static image of nuclear medicine study should be acquired without a motion, however, it is difficult to acquire static image without movement for the serious patients, advanced aged patients. These movements cause decreases in reliability for quantitative and qualitative analysis, therefore re-examination was inevitable in the some cases. Consequently, in order to improve the problem of motion artifacts, the authors substituted the dynamic acquisition technique for the static acquisition, using motion correction. Materials and Methods: A capillary tube and IEC body phantom were used. First, the static image was acquired for 60 seconds while the dynamic images were acquired with a protocol, 2 sec/frame${\times}$30 frames, under the same parameter and the frames were summed up into one image afterwards. Also, minimal motion and excessive motion were applied during the another dynamic acquisition and the coordinate correction was applied towards X and Y axis on the frames where the motion artifact occurred. But the severe blurred images were deleted. Finally, the resolution and counts were compared between the static image and the summed dynamic images which before and after applying motion correction, and the signal of frequency was analysed after frequency spatial domain was transformed into 2D FFT. Supplementary examination, the blind test was performed by the nuclear medicine department staff. Results: First, the resolution in the static image and summed dynamic image without motion were 8.32 mm, 8.37 mm on X-axis and 8.30 mm, 8.42 mm on Y-axis, respectively. The counts were 484 kcounts, 485 kcounts each, so there was nearly no difference. Secondly, the resolution in the image with minimal motion applying motion correction was 8.66 mm on X-axis, 8.85 mm on Y-axis and had 469 kcounts while the image without motion correction was 21.81 mm, 24.02 mm and 469 kcounts in order. So, this shows the image with minimal motion applying motion correction has similar resolution with the static image. Lastly, the resolution in the images with excessive motion applying motion correction were 9.09 mm on X-axis, 8.83 mm on Y-axis and had 469 kcounts while the image without motion correction was 47.35 mm, 40.46 mm and 255 kcounts in order. Although there was difference in counts because of deletion of blurred frames, we could get similar resolution. And when the image was transformed into frequency, the high frequency was decreased by the movement. However, the frequency was improved again after motion correction. In the blind test, there was no difference between the image applying motion correction and the static image without motion. Conclusion: There was no significant difference between the static image and the summed dynamic image. This technique can be applied to patients who may have difficulty remaining still during the imaging process, so that the quality of image can be improved as well as the reliance for analysis of quantity. Moreover, the re-examination rate will be considerably decreased. However, there is a limit of motion correction, more time will be required to successfully image the patients applying motion correction. Also, the decrease of total counts due to deletion of the severe blurred images should be calculated and the proper number of frames should be acquired.

  • PDF

Motion Estimation Using the Relation Between Rate and Distortion (부호화율과 일그러짐의 관계를 이용하는 움직임 추정)

  • 양경호;김태정;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.66-73
    • /
    • 1992
  • This paper proposes a new motion estimation algorithm which takes into account the rate-distortion relation in encoding motion compensated error images. The proposed algorithm is based on a new block-matching criterion which is the function of not only the mean squared block-matching error but also the code length for the entropy coded motion vector. The proposed algorithm optimizes the trade-off between the bit rate for motion compensated error images and the bit rate for the motion vectors. Simulation results show that in the motion compensated image coding the proposed motion estimator improves the overall performance by 0.5 dB when compared to the motion estimator which uses MSE only.

  • PDF

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

Motion Compensated Deinterlacing with Variable Block Sizes

  • Kim, In-Ho;Lee, Chul-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.469-472
    • /
    • 2005
  • In this paper, we propose a new deinterlacing algorithm based on motion estimation and compensation with variable block size. Motion compensated methods using a fixed block size tend to produce undesirable artifacts when there exist complicated motion and high frequency components. In the proposed algorithm, the initial block size of motion estimation is determined based on the existence of global motion. Then, the block is divided depending on block characteristics. Since motion compensated deinterlacing may not always provide satisfactory results, the proposed method also use an intrafield spatial deinterlacing. Experimental results show that the proposed method provides noticeable improvements compared to motion compensated deinterlacing with a fixed block size.

  • PDF

A NOVEL FUZZY SEARCH ALGORITHM FOR BLOCK MOTION ESTIMATION

  • Chen, Pei-Yin;Jou, Jer-Min;Sun, Jian-Ming
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.750-755
    • /
    • 1998
  • Due to the temporal spatial correlation of the image sequence, the motion vector of a block is highly related to the motion vectors of its adjacent blocks in the same image frame. If we can obtain useful and enough information from the adjacent motion vectors, the total number of search points used to find the motion vector of the block may be reduced significantly. Using that idea, an efficient fuzzy prediction search (FPS) algorithm for block motion estimation is proposed in this paper. Based on the fuzzy inference process, the FPS can determine the motion vectors of image blocks quickly and correctly.

  • PDF

Motion-Compensated Frame Rate Up-Conversion Using Guidance Motion Vector (유도 움직임 벡터를 이용한 움직임 보상 프레임율 향상 기법)

  • Park, Bumjun;Yu, Songhyun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.66-69
    • /
    • 2017
  • 본 논문에서는 프레임율 향상 기법 (Frame Rate Up-Conversion, FRUC)에 사용되는 새로운 움직임 예측(motion estimation)알고리즘을 제시한다. 제안된 알고리즘은 단 방향 움직임 예측(unilateral motion estimation)에 의해 순방향 및 역방향의 움직임 벡터(motion vector)를 독립적으로 추정한다. 움직임 벡터를 찾은 후, weighted motion vector smoothing(WMVS)가 적용된다. 다음으로, 보간 프레임 (interpolated frame)의 관점에서 현재 블록의 인접 블록들의 모션 벡터들을 후보들로 사용하여 현재 블록과 가장 잘 일치하는 움직임 벡터를 찾는다. 그 후, 선택된 움직임 벡터를 현재 블록의 유도 움직임 벡터 (guidance motion vector)로 정한다. 그런 다음 motion vector shifting error 를 없애기 위해 motion vector refinement (MVR)가 진행된다. 마지막 단계에서는 각 움직임 벡터의 신뢰도를 계산하여 순방향 및 역방향 움직임 벡터 중 최종 움직임 벡터를 선택한다.

  • PDF

A Study on Measurement of Capacitive Electrode Motion Artifact (용량성 전극의 동잡음 측정 장치 연구)

  • Lim, Yong Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.137-141
    • /
    • 2017
  • The indirect-contact bio-electric measurements using capacitive electrodes show large motion artifacts in comparison with conventional direct-contact measurements. It is necessary to measure the motion artifacts quantitatively, for the researches of reducing the motion artifacts. In this study, a device for quantitative measurement of motion artifacts was built. Using the device, an electrode was rubbed against some cloth(cotton) and the voltage variation of the electrode was measured as motion artifact in several environmental conditions(temperature and relative humidity). The measured waveforms agreed with that expected by the triboelectricity and the prior observations of the motion artifacts. Therefore, the results demonstrated the usability of the measurement system built in this study. The measurement system will be a great contribution to future research for reducing motion artifact.