• Title/Summary/Keyword: morphology formation

Search Result 1,229, Processing Time 0.026 seconds

An Adsorption Process Study on the Self-Assembled Monolayer Formation of Octadecanethiol Chemisorged on Gold Surface

  • Kim, Dong Ho;No, Jae Gwon;Masahiko Hara;Lee, Hye Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.276-280
    • /
    • 2001
  • The self-assembled formation of octadecanethiol (CH3(CH2)17SH) on a gold substrate was studied using a quartz crystal microbalance (QCM) and a scanning tunneling microscope (STM). From the QCM measurements at vario us concentrations of octadecanethiol solutions in hexane and alcohol, the adsorption process of octadecanethiol onto Au was confirmed to consist of two steps as follows: (i) fast but disordered adsorption and (ii) a thermodynamically controlled rearrangement for uniform packing of octadecanethiol. Also, it was revealed that the adsorption rate became faster in ethanol than in hexane since less solubility of octadecanethiol in ethanol could help the formation of the monolayers. At 5 ${\times}$10-7 M solution, the monolayer formation was monitored by STM. The morphology of monolayer region was initially circular (diameter size: 7.26 $\pm$ 2.1 nm) and gradually changed to a stripe type after several minutes. At higher concentration, the self-assembled monolayer was formed immediately after the solution was introduced to a substrate.

PEO Film Formation Behavior of AZ31 Mg Alloy under Pulse Current (펄스 전류 하에서 AZ31 마그네슘 합금의 플라즈마전해산화 피막의 형성 거동)

  • Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.5
    • /
    • pp.292-298
    • /
    • 2022
  • In this study, PEO (plasma electrolytic oxidation) film formation behavior of AZ31 Mg alloy under application of 300 Hz pulse current was studied by the analyses of V-t curve, arc generation behavior, PEO film thickness and morphology of PEO films with treatment time in 0.05 M NaOH + 0.05 M Na2SiO3 + 0.1 M NaF solution. PEO films was observed to grow after 10 s of application of pulse current together with generation of micro-arcs. PEO film grew linearly with treatment time at a growth rate of about 5.58 ㎛/min at 200 mA/cm2 of pulse current but increasing rate of film formation voltage became lowered largely with increasing treatment time after passing about 250 V, suggesting that resistivity of PEO films during micro-arc generation decreases with increasing film formation voltage at more than 250 V.

Automatic Analysis of Bone Formation in a Mouse Model of Frontal Bone Defect (전두골 결손 마우스 모델의 골형성 자동 분석)

  • Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.997-1007
    • /
    • 2015
  • In this paper, we propose a method for automatically analyzing the bone formation in a mouse model of frontal bone defect. We perforate two holes of 0.8mm diameter in the frontal bone and observe the bone formation process using a micro CT. Because the conventional analysis software of the micro CT does not support automatic analysis of the bone formation status, we have to use a manual analysis method. However the manual analysis is very cumbersome and requires a lot of time, we propose an automatic analysis method. It rotates the image around three axes directions so that the mouse's skull come into regular position. It calculates the cumulative image of the voxel values for the perforated bone surface. It estimates the hole location by finding the darkest point in the cumulative image. The proposed method was applied to 24 CT images of saline administration group and PTH administration group and hole location was estimated. BV/TV index was calculated for the estimated hole to evaluate the bone formation status. Experimental results showed that bone formation process is more active in PTH administration group. The method proposed in this paper could replace successfully the cumbersome and time consuming manual job.

Enhanced Electrochromic Performance by Uniform Surface Morphology of Tungsten Oxide Films (텅스텐산화물 막의 균일한 표면 형상에 의한 향상된 전기변색 성능)

  • Kim, Kue-Ho;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.411-416
    • /
    • 2018
  • Tungsten oxide($WO_3$) films with uniform surface morphology are fabricated using a spin-coating method for applications of electrochromic(EC) devices. To improve the EC performances of the $WO_3$ films, we control the heating rate of the annealing process to 10, 5, and $1^{\circ}C/min$. Compared to the other samples, the $WO_3$ films fabricated at a heating rate of $5^{\circ}C/min$ shows superior EC performances for transmittance modulation(49.5 %), response speeds(8.3 s in a colored state and 11.2 s in a bleached state), and coloration efficiency($37.3cm^2/C$). This performance improvement is mainly related to formation of a uniform surface morphology with increased particle size without any cracks by an optimized annealing heating rate, which improves the electrical conductivity and electrochemical activity of the $WO_3$ films. Thus, the $WO_3$ films with a uniform surface morphology prepared by the optimized annealing heating rate can be used as a potential candidate for performance improvement of the EC devices.

High-Rise Urban Form and Environmental Performance - An Overview on Integrated Approaches to Urban Design for a Sustainable High-Rise Urban Future

  • Yang, Feng
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • High-rise as a building typology is gaining popularity in Asian mega-cities, due to its advantages in increasing volumetric density with limited land resources. Numerous factors contribute to the formation of high-rise urban form, from economical and institutional, environmental to socio-political. Environmental concerns over the impact of rapid urbanization in developing economies demand new thought on the link between urban environment and urban form. Outdoor and indoor climate, pedestrian comfort, and building energy consumption are all related to and impacted by urban form and building morphology. There are many studies and practices on designing individual "green" high-rise buildings, but far fewer studies on designing high-rise building clusters from the perspective of environmental performance optimization.. This paper focuses on the environmental perspective, and its correlation with the evolution of the high-rise urban form. Previous studies on urban morphology in terms of environmental and energy performance are reviewed. Studies on "parameterizing" urban morphology to estimate its environmental performance are reviewed, and the possible urban design implications of the study are demonstrated in by the author, by way of a microclimate map of the iconic Shanghai Xiao Lujiazui CBD. The study formulates the best-practice design guidelines for creating walkable and comfortable outdoor space in a high-rise urban setting, including proper sizing of street blocks and building footprint, provision of shading, and facilitating urban ventilation.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Characterization of cultures isolated from fruiting body tissue in Armillaria gallica (천마버섯(Armillaria gallica) 자실체 조직배양체의 특성)

  • Yoo, Young-Bok;Oh, Jin A;Oh, Youn-Lee;Moon, Jiwon;Shin, Pyung-Gyun;Jang, Kab-Yeul;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • The fruiting body of honey mushroom, Armillaria gallica, was collected from Gastrodia elata cultivated fields. Pure cultures were isolated from fruiting body tissue of the mushrooms, and cultured on MCM (mushroom complete medium) or PDA (potato dextrose agar) medium. Then, 12 different types of mycelial growth characteristics such as growth rate, colony morphology and rhizomorph formation were obtained. The vitality of the mycelial growth and rhizomorph formation of the fruiting body culture isolates were better on MCM than PDA, suggesting that the optimal culture medium for A. gallica mycelia was MCM. To observe the feature of colony morphology, the subculture of isolates were incubated on MCM. Consequently, we could find the segregated or differentiated colony morphology from isolate type 11 that was similar morphology to isolate type 12. For phylogenetic analysis of the 12 isolates, RAPD (Random Amplified Polymorphic DNA) were performed. The isolate type 12 was not only shown different band patterns of RAPD variation in other 11 isolates, but also commercial strain known as Chunmagyun No. 1. Among the tissue culture isolates of fruiting, strains with better mycelial growth characteristics than Chunmagyun No. 1 were selected. We expect that the new strain can be substituted to commercial strain Chunmagyun No. 1.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

The main sequence of star forming galaxies at intermediate redshift

  • Salmi, Fadia
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.71.2-71.2
    • /
    • 2014
  • processes at the origin of the star formation in the galaxies over the last 10 billions years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates. In the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. I was especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. I have studied this main sequence, SFR-M*, in function of the morphology and other physical parameters as the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence.

  • PDF