• Title/Summary/Keyword: morphological segmentation

Search Result 159, Processing Time 0.027 seconds

Pectoral Muscle Segmentation of Breast MRI using Structure Tensor and Morphological Operation (구조 텐서와 모폴로지 연산을 이용한 유방 MR 영상의 흉근분할)

  • Lee, Myung-Eun;Chen, Yan-Juan;Kim, Soo-Hyung;Kim, Jong-Hyo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.416-417
    • /
    • 2011
  • 본 논문에서는 구조텐서와 모폴로지 연산을 이용한 유방 MR 영상에서 흉근을 제거하기 위한 분할 방법을 제안한다. 제안하는 방법은 영상의 그레디언트 정보를 나타내는 구조텐서와 복잡한 구조텐서를 평활화하기 위한 모폴로지 연산을 적용하여 영상 진단 및 영상 정합시 불필요한 흉근부분을 자동으로 분할하고자 한다. 실험결과에서 확인할 수 있듯이 정확한 분할의 결과는 향후 컴퓨터 보조 진단 시스템에 유용하게 사용할 수 있을 것으로 기대된다.

Automatic Segmentation of Trabecular Bone Based on Sphere Fitting for Micro-CT Bone Analysis (마이크로-CT 뼈 영상 분석을 위한 구 정합 기반 해면뼈의 자동 분할)

  • Kang, Sun Kyung;Kim, Young Un;Jung, Sung Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.329-334
    • /
    • 2014
  • In this study, a new method that automatically segments trabecular bone for its morphological analysis using micro-computed tomography imaging was proposed. In the proposed method, the bone region was extracted using a threshold value, and the outer boundary of the bone was detected. The sphere of maximum size with the corresponding voxel as the center was obtained by applying the sphere-fitting method to each voxel of the bone region. If this sphere includes the outer boundary of the bone, the voxels included in the sphere are classified as cortical bone; otherwise, they are classified as trabecular bone. The proposed method was applied to images of the distal femurs of 15 mice, and comparative experiments, with results manually divided by a person, were performed. Four morphological parameters-BV/TV, Tb.Th, Tb.Sp, and Tb.N-for the segmented trabecular bone were measured. The results were compared by regression analysis and the Bland-Altman method; BV/TV, Tb.Th, Tb.Sp, and Tb.N were all in the credible range. In addition, not only can the sphere-fitting method be simply implemented, but trabecular bone can also be divided precisely by using the three-dimensional information.

Replication and Sequential Development of Adherent Mycoplasma Pneumoniae Studied by Light and Electron Microscopies (광학(光學) 및 전자현미경기술(電子顯微鏡技術)에 의(依)한 Mycoplasma pneumoniae의 분열(分裂)과 연속분화(連續分化)에 관(關)한 연구(硏究))

  • Kim, C.K.;Pfister, Robert M.
    • Applied Microscopy
    • /
    • v.12 no.2
    • /
    • pp.11-22
    • /
    • 1982
  • The morphological development of Mycoplasma pneumoniae attached to solid surfaces was examined by light and electron microscopies. Critical point drying and carbon replication techniques revealed that during the growth cycle of developing microcolonies, the morphological form coincided with the pH of the culture. M. pneumoniae appeared to have a well defined morphology associated with age of the culture. The organisms were dimorphic, with round cells capable of reproduction and segments consisting of a spindle shaped body with one pointed and one knob-like end. Starting with single cells, there were the following stages in the development of a culture: replication stage through binary fission and segmentation, stage of confluency, and a degeneration stage into rough spherical forms. The round cells appearrd to replicate by binary fission during the lag and early log phases of growth, while spindle segments replicated by segmentation during most of the logarithmic growth. The growth of the filaments and replication of the segments occured at the knob-like ends, showing a type of polarity, and formed a meshwork across the surface. This development could be cycled under favorable growth conditions, but the culture aged and when the conditions became adverse(e.g. pH 6.8 or lower), filamentous cells converted to spherical forms, losing their reproductive capability.

  • PDF

An Algorithm of Welding Bead Detection and Evaluation Using and Multiple Filters Geodesic Active Contour (다중필터와 축지적 활성 윤곽선 알고리즘을 이용한 용접 비드 검출 및 판단 알고리즘)

  • Milyahilu, John;Kim, Young-Bong;Lee, Jae Eun;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • In this paper, we propose an algorithm of welding bead detection and evaluation using geodesic active contour algorithm and high pass filter with image processing technique. The algorithm uses histogram equalization and high pass filter as gaussian filter to improve contrast. The image processing techniques smoothens the welding beads reduce the noise on an image. Then, the algorithm detects the welding bead area by applying the geodesic active contour algorithm and morphological ooperation. It also applies the balloon force that either inflates in, or deflates out the evolving contour for a better segmentation. After that, we propose a method for determining the quality of welding bead using effective length and width of the detected bead. In the experiments, our algorithm achieved the highest recall, precision, F-measure and IOU as 0.9894, 0.9668, 0.9780, and 0.8957 respectively. We compared the proposed algorithm with the conventional algorithms to evaluate the performance of the proposed algorithm. The proposed algorithm achieved better performance compared to the conventional ones with a maximum computational time of 0.6 seconds for segmenting and evaluating one welding bead.

A Fast Pupil Detection Using Geometric Properties of Circular Objects (원형 객체의 기하학적 특성을 이용한 고속 동공 검출)

  • Kwak, Noyoon
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.215-220
    • /
    • 2013
  • They are well-known geometric properties of a circle that the perpendicular bisector of a chord passes through the center of a circle, and the intersection of the perpendicular bisectors of any two chords is its center. This paper is related to a fast pupil detection method capable of detecting the center and the radius of a pupil using these geometric properties at high speed when detecting the pupil region for iris segmentation. The proposed method is characterized as rapidly detecting the center and the radius of the pupil, extracting the candidate points of the circle in human eye images using morphological operations, and finding two chords using four points on the circular edge, and taking the intersection of the perpendicular bisectors of these two chords for its center. The proposed method can not only detect the center and the radius of a pupil rapidly but also find partially occluded pupils in human eye images.

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Hierarchical Image Segmentation by Binary Split for Region-Based Image Coding (영역기반 영상부호화를 위한 이진 분열에 의한 계층적인 영상분할)

  • Park, Young-Sik;Song, Kun-Woen;Han, Kyu-Phil;Lee, Ho-Young;Nam, Jae-Yeal;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.68-76
    • /
    • 1998
  • In this paper, a new morphological image segmentation algorithm of hierarchical structure by binary split is proposed. It splits a region with the lowest quality into two regions using only two markers having the highest contrast. Therefore, it improves the quality of image with limited regions and reduces contour information which is not sensitive to human visual system, when compared with the conventional algorithm. It is appropriate to PSTN, LAN, and mobile networks, of which the available transmission bandwidth is very limited, because the number of regions can be controlled. And the proposed algorithm shows very simple structure because it doesn't need post processing to eliminate small regions and reduces much computation by using only structuring element of small size at simplification step of each hierarchical structure when compared with the conventional algorithm.

  • PDF

Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image (RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할)

  • Yang, Hyuk Jin;Kim, Dong Hyun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1603-1613
    • /
    • 2017
  • This paper proposes a method for effectively segmenting the hand region using a widely popular RGB color-based webcam. This performs the empirical preprocessing method four times to remove the noise. First, we use Gaussian smoothing to remove the overall image noise. Next, the RGB image is converted into the HSV and the YCbCr color model, and global fixed binarization is performed based on the statistical value for each color model, and the noise is removed by the bitwise-OR operation. Then, RDP and flood fill algorithms are used to perform contour approximation and inner area fill operations to remove noise. Finally, ROI (hand region) is selected by eliminating noise through morphological operation and determining a threshold value proportional to the image size. This study focuses on the noise reduction and can be used as a base technology of gesture recognition application.

Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement (화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘)

  • Lee, Joon-Goo;Han, Ki-Sun;You, Byoung-Moon;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Shot boundary detection is an essential step for efficient browsing, sorting, and classification of video data. Robust shot detection method should overcome the disturbances caused by pixel brightness and object movement between frames. In this paper, two shot boundary detection methods are presented to address these problem by using segmentation, object movement, and pixel brightness. The first method is based on the histogram that reflects object movements and the morphological dilation operation that considers pixel brightness. The second method uses the pixel brightness information of segmented and whole blocks between frames. Experiments on digitized video data of National Archive of Korea show that the proposed methods outperforms the existing pixel-based and histogram-based methods.

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.