• 제목/요약/키워드: morphological operations

검색결과 108건 처리시간 0.028초

RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할 (Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image)

  • 양혁진;김동현;서영건
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1603-1613
    • /
    • 2017
  • 본 논문은 널리 알려진 RGB 색상 기반의 웹캠을 사용한 손 영역을 효율적으로 분할하는 방법을 제안한다. 이 방법은 잡음을 제거하기 위하여 네 번의 경험적 전처리 방법을 수행한다. 먼저, 전체 영상 잡음을 제거하기 위하여 가우시안 평활화를 수행한다. 다음으로, RGB 영상은 HSV와 YCbCr 색상 모델로 변환되어, 각 색상 모델에 대해 통계적인 값에 기반하여 전역 고정 이진화가 수행된 후, 잡음은 bitwise-OR 연산에 의해 제거된다. 다음으로, 윤곽 근사화와 내부 영역 구멍 연산을 위해 RDP와 flood fill 알고리즘이 사용된다. 끝으로, 모폴로지 연산을 통하여 잡음을 제거하고 영상의 크기에 비례한 임계값을 결정하여 손 영역이 결정된다. 본 연구는 잡음 제거에 초점을 맞추고 있고 손 동작 인식 응용 기술에 사용될 수 있다.

형태학과 색상 정보를 이용한 차선 인식 알고리즘 (Lane Detection Algorithm using Morphology and Color Information)

  • 배찬수;이종화;조상복
    • 대한전자공학회논문지SD
    • /
    • 제48권6호
    • /
    • pp.15-24
    • /
    • 2011
  • 지능형 자동차 시스템에 대한 인식이 높아지면서 차선 획득 알고리즘에 대해 많이 연구되고 있다. 일반적인 차선 인식에서 사용하는 경계선 추출을 사용하는 방법은 도로에서의 차선 검출에 좋은 결과를 가져 올 수 있다. 하지만 도로에 그림자, 혹은 가로 선 같은 다른 경계선이 검출 될 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 형태학적 연산을 적용하여 차선에 대한 정보를 추출하였다. 또한 HSV(Hue, Saturation, Value) 칼라 모델을 적용하여 색상에 대한 정보를 이용함으로써 한번 더 차선의 정보를 추출하였다. 추출된 차선의 후보들을 이용하여 Hough 변환을 통해 차선이 존재할 가능성이 높은 차선 검출 영역을 설정하고, 이러한 차선 검출 영역 내에서 차선을 추출하는 방식을 사용함으로써 효과적으로 차선을 검출할 수 있었다.

2D 바코드의 분진 오염 극복 방법 (A Method to Recover 2D barcodes Contaminated with Dust)

  • 하은재;이재성
    • 한국정보통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.276-281
    • /
    • 2019
  • 푸드 프린터는 반드시 식품의약품안전처의 허가를 받은 식용 잉크 카트리지를 사용해야한다. 잉크 카트리지의 정품 여부를 판독하기 위해 2D 바코드를 사용하는데 색소가 열압력에 의해 발산하여 인쇄가 되기 때문에 바코드에 오염이 발생한다. 본 논문에서는 라떼 아트 프린터에서 식용 색소 분진에 의한 정품 인증 바코드의 오염 문제를 해결하고자 다양한 모폴로지 연산에 기반한 전처리(pre-processing) 알고리즘을 제안하였다. 오염된 바코드 이미지들을 QR코드 리더기로 인식시키기 전에 본 알고리즘을 적용하면 기존의 리더기 대비 인식이 가능한 오염도가 25%에서 40%로 증가함을 알 수 있었으며 45%의 오염도에서도 50%의 확률로 인식이 되는 것을 확인하였다.

명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할 (Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification)

  • 김민정;이정민;김명희
    • 정보처리학회논문지A
    • /
    • 제13A권5호
    • /
    • pp.465-472
    • /
    • 2006
  • 최근 대용량 의료영상 데이터로부터 인체 기관 또는 질환 부위 추출을 위한 영상 분할 기법이 매우 다양하게 제안되고 있으나, 뇌와 같이 다중 구조를 가지면서 구조간 경계 구분이 어려운 영상의 구조적 분할에는 한계를 가진다. 이를 위해 주로 복셀을 유한 개의 군집으로 분류하는 군집화 (clustering) 기법이 이용되나 이는 개별 복셀 단위의 연산을 수행함으로 인해 잡음의 영향을 받는 제한점이 있다. 그러므로 잡음의 영상을 최소화하고 영상 경계를 강화시키는 향상기법을 적용함으로써 보다 견고한 구조적 분할을 수행할 수 있다. 본 연구에스는 뇌 자기공명영상에 대하여 백질(white matter), 회백질(gray matter), 뇌척수액(cerebrospinal fluid)의 내부 구조를 효율적으로 추출하기 위한 필터링 기반 군집화에 의한 구조적 분할 기법을 제안한다. 우선 구조간 경계를 강화하고 구조 내 잡음을 약화시키기 위해 응집성 향상 확산 필터링(coherence enhancing diffusiion filtering)을 적용한다. 또한 이 과정을 통해 강화된 영상에 퍼지 c-means 군집화 기법을 적용하여 각 복셀이 속하는 구조에 해당하는 군집의 인덱스를 할당함으로써 구조적 분할을 수행한다. 제안된 구조적 분할기법은 기존의 가우시안 또는 일반적인 비등방성 확산 필터링과 군집화 기법을 적용한 기법에 비해 전문가의 수동분할 결과와의 일치 비율에 의한 분할 정확도를 향상시킴을 보였다. 또한 경계 부분에 있어서의 세밀한 분할을 통해 재생산 가긍하고 사용자 수동후 처리를 최소화할 수 있는 결과를 제시함으로써 형태적 뇌 이상 진단을 위한 효율적인 보조 수단을 제공한다.

대비 지도와 움직임 정보를 이용한 동영상으로부터 중요 객체 추출 (Salient Object Extraction from Video Sequences using Contrast Map and Motion Information)

  • 곽수영;고병철;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1121-1135
    • /
    • 2005
  • 본 논문에서는 시공간 정보를 이용하여 동영상에서 움직이는 객체를 자동으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법은 다른 영역과 구별되는 현저한 장소에 무의식적으로 집중되는 시각주의 특성을 컴퓨터 시스템에 도입한 대비 지도(contrast map)와 중요 특징점(salient point)을 적용한 것이 큰 특징이라고 할 수 있다. 대비 지도는 밝기(luminance), 색상(color) 그리고 방향성(direction) 3가지의 특징 정보 중 자기와 방향성의 특징을 나타내는 자기 지도(luminance map)와 방향성 지도(directional map)를 결합하여 대비 지도를 생성한다. 또한, 사람이 시각적으로 볼 때 의미 있다고 생각하는 중요 특징점을 웨이블릿 변환을 이용하여 찾아낸다. 이렇게 생성된 대비 지도와 중요 특징점을 이용하여 대략적인 집중윈도우(AW:Attention Window)의 위치와 크기를 결정한다. 다음으로, 동영상의 가장 큰 특징인 움직임 정보를 추정하여 집중윈도우를 객체에 가장 근사하게 축소시키고, 윤곽선 정보를 이용하여 객체를 추출한다. 윤곽선을 추출하기 위해 캐니에지(canny edge)를 사용하였으며, 배경의 윤곽선 제거를 위하여 윤곽선의 차이(DE:Difference of Edge)를 이용하여 가로 후보영역과 세로 후보영역을 추출한다. 추출된 2개의 후보영역을 AND연산과 모폴로지 연산을 이용하여 객체를 자동으로 추출하는 방법을 제안한다. 실험은 카메라가 고정된 상태에서 촬영한 동영상에 대해 이루어 졌으며, 객체와 배경이 효과적으로 분리되는 것을 확인하였다.

머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현 (Implementation of a walking-aid light with machine vision-based pedestrian signal detection)

  • 구지훈;이주성;조홍래;안호명
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.31-37
    • /
    • 2024
  • 본 연구에서는 컴퓨팅 자원이 제한된 환경에서도 효율적으로 동작 가능한 머신비전 기반의 보행자 신호 검출 알고리즘을 제안하였다. 이 알고리즘은 제한된 자원에서도 높은 효율성을 발휘하며, 주변 조명 등의 영향을 최소화하기 위해 HSV 색공간 기반의 영상처리, 이진화, 모폴로지 연산, 라벨링 등의 단계를 순차적으로 적용하여 빛 번짐과 같은 현상에 대응할 수 있도록 설계되었다. 특히, 이 알고리즘은 비교적 단순한 형태로 구성되어 임베디드 시스템 환경에서 부담 없이 동작할 수 있도록 고려되었다. 이를 통해 낮은 컴퓨팅 자원을 보유한 환경에서도 안정적으로 작동할 수 있는 구조를 갖췄다. 또한, 제안된 보행등은 보행신호 검출 기능뿐만 아니라 IoT 기능을 탑재하여 무선으로 웹서버와 연동되는 기능을 갖췄다. 이에 따라 보행등 설치자 및 제어권자들은 웹 서버를 통해 신호등의 상태를 모니터링하고 제어할 수 있는 편의성을 제공받을 수 있다. 더불어, 50W급 LED 보행등을 효과적으로 제어할 수 있는 구현이 완료되었다. 이러한 제안된 시스템은 자원 제한 환경에서의 신속하고 효율적인 보행자 신호 검출 및 제어 시스템으로, 실제 도로 환경에서의 적용 가능성을 고려하고 있다. 이를 통해 보다 안전하고 지능적인 도로 교통 시스템의 구축에 기여할 것으로 기대된다.

자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별 (Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships)

  • 이현우;임정빈
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.410-418
    • /
    • 2023
  • 최근 자율운항선박 관련 연구개발과 상용화가 급속하게 진행됨과 동시에 자율운항선박의 감항성 확보를 위하여 선박에 설치된 각종 장비 상태를 원격지에서 검사할 수 있는 방법 역시 연구되고 있다. 특히, 각종 장비에 부착된 아날로그 게이지의 값을 영상처리를 통해 획득할 수 있는 방법이 주요 이슈로 부각되고 있는데, 그 이유는 영상처리 기법을 이용하면 이미 설치되었거나 또는 설치 예정인 다수의 장비를 변형 또는 변경하지 않고 비접촉식으로 게이지의 값을 검출할 수 있어서 장비의 변형 또는 변경에 따른 선급의 형식승인 등이 필요하지 않은 장점이 있기 때문이다. 본 연구의 목적은 잡음이 포함된 아날로그 게이지의 영상 중에서 동적으로 변하는 지시바늘의 객체를 식별하는데 있다. 지시바늘 객체의 위치는 정확한 게이지 값의 판독에 영향을 미치는데, 게이지 값을 정확하게 판독하기 위해서는 우선하여 지시바늘 객체의 식별이 중요하다. 지시바늘 객체의 식별 작업을 위한 영상은 비상소화펌프 모형에 부착한 수압 측정용 아날로그 게이지를 이용하여 획득하였다. 획득한 영상은 가우시안 필터와 임계처리 그리고 모폴로지 연산 등을 통해서 사전처리한 후, 허프 변환을 통해서 지시바늘의 객체를 식별하였다. 실험결과, 잡음이 포함된 아날로그 게이지의 영상에서 지시바늘의 중심과 객체가 식별됨을 확인하였고, 그 결과 본 연구에 적용한 영상처리 방법이 선박에 장착된 아날로그 게이지의 객체 식별에 적용될 수 있음을 알았다. 본 연구는 자율운항선박의 원격검사를 위한 하나의 영상처리 방법으로 적용될 것으로 기대된다.

형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출 (Automatic Text Extraction from News Video using Morphology and Text Shape)

  • 장인영;고병철;김길천;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.479-488
    • /
    • 2002
  • 최근 들어 인터넷 사용의 증가와 더불어 디지털 비디오의 수요 또한 급격히 증가하고 있는 추세이다. 따라서 디지털 비디오 데이타베이스의 인덱싱을 위한 자동화된 도구가 필요하게 되었다. 디지털비디오 영상에 인위적으로 삽입되어진 문자와 배경에 자연적으로 포함되어진 배경문자 등의 문자 정보는 이러한 비디오 인덱싱을 위한 중요한 단서가 되어질 수 있다. 본 논문에서는 뉴스 비디오의 정지 영상에서 뉴스 자막과 배경 문자를 추출하기 위한 새로운 방법을 제안한다. 제안된 알고리즘은 다음과 같이 세 단계로 구성된다. 첫 번째 전처리 단계에서는 입력된 컬러 영상을 명도 영상으로 변환하고, 히스토그램 스트레칭을 적용하여 영상의 수준을 향상시킨다. 이 영상에 적응적 임계값 추출에 의한 분할 방법을 수정 적용하여 영상을 분할한다. 두 번째 단계에서는 적응적 이진화가 적용된 결과 영상에 모폴로지 연산을 적절하게 사용하여, 우선 문자 영역은 아니면서 문자로 판단되기 쉬운 양의 오류(false-positive) 요소들이 강조되어 남아있는 영상을 만든다. 또한, 변형된 이진화 결과 영상에 모폴로지 연산과 본 논문에서 제안한 기하학적 보정(Geo-corrertion) 필터링 방법을 적용하여 문자와 문자로 판단되기 쉬운 요소들이 모두 강조되어 남아있는 영상을 만든다. 이 두 영상의 차를 구함으로서 찾고자 하는 문자 요소들이 주로 남고, 문자가 아닌 문자처럼 보이는 오류 요소들은 대부분 제거된 결과 영상을 만든다. 문자로 판단되는 양의 오류 영역들을 남기는데 사용된 모폴로지 연산은 3$\times$3 크기의 구조 요소를 갖는 열림과 (열림닫힘+닫힘열림)/2 이며, 문자 및 문자와 유사한 요소들을 남기는데 사용된 연산은 (열림닫힘+닫힘열림)/2와 기하학적 보정이다. 세 번째 검증 단계에서는 전체 영상 화소수 대비 각 후보 문자 영역의 화소수 비율, 각 후보 문자 영역의 전체 화소수 대비 외곽선의 화소수 비율, 각 외곽 사각형의 폭 대 높이간의 비율 등을 고려하여 비문자로 판단되는 요소들을 제거한다. 임의의 300개의 국내 뉴스 영상을 대상으로 실험한 결과 93.6%의 문자 추출률을 얻을 수 있었다. 또한, 본 논문에서 제안한 방법으로 국외 뉴스, 영화 비디오 등의 영상에서도 좋은 추출을 보임을 확인할 수 있었다.