In this paper, we present an improved multi-scale gradient algorithm. The proposed algorithm works the effectively handling of both step and blurred edges. In the proposed algorithm, the image sharpening operator is sharpening the edges and contours of the objects. This operation gives an opportunity to get noise reduced image and step edged image. After that, multi-scale gradient operator works on noise reduced image in order to get a gradient image. The gradient image is segmented by watershed transform. The approach of region merging is used after watershed transform. The region merging is carried out according to the region area and region homogeneity. The region number of the proposed algorithm is 36% shorter than that of the existing algorithm because the proposed algorithm produces a few irrelevant regions. Moreover, the computational time of the proposed algorithm is relatively fast in comparison with the existing one.
본 논문에서는 형태학적 연산(morphological operation)과 영역 융합(region merging) 방법을 이용한 영상 분할(image segmentation) 방법을 제안한다. 이를 위해서 형태학적 필터(morphological filter)를 이용하여 단순화한 영상에 대해, 다중크기 경사(multiscale gradient) 연산자를 이용하여 경사 영상(gradient image)을 얻는다. 경사 영상에 watershed 변환을 적용하면 분할 영상을 얻을 수 있는데, 이렇게 얻은 분할 영상은 대개 과분할(oversegmentation) 영상이므로, 분할 영역을 줄이기 위해 미소 영역(small region)이나 비슷한 특성을 갖는 인접 영역들은 서로 융합시킬 필요가 있다. 본 논문에서는 영역을 융합하기 위한 기준으로서 영역간의 평균 에지 강도와 각 영역의 화소값들에 비해 평균값을 사용하는데, 이러한 융합 기준은 contour following 과정에서 계산된다. 제안한 방법은 watershed 알고리듬, 영역에 기반한 영상 분할, 경계에 기반한 분할 방법을 결합한 방법으로서, 향상된 영상 분할이 가능함을 실험을 통하여 제시하였다.
Journal of information and communication convergence engineering
/
제12권1호
/
pp.60-65
/
2014
This paper describes an efficient framework for the extraction of a brain tumor from magnetic resonance (MR) images. Before the segmentation process, a median filter is used to filter the image. Then, the morphological gradient is computed and added to the filtered image for intensity enhancement. After the enhancement process, the thresholding value is calculated using the mean and the standard deviation of the image. This thresholding value is used to binarize the image followed by the morphological operations. Moreover, the combination of these morphological operations allows to compute the local thresholding image supported by a flood-fill algorithm and a pixel replacement process to extract the tumor from the brain. Thus, this framework provides a new source of evidence in the field of segmentation that the specialist can aggregate with the segmentation results in order to soften his/her own decision.
본 논문은 형태학적 워터쉐드 알고리즘을 이용하여 잡음에 강한 효율적인 영상분할에 대해서 논의하고자 한다. 기존의 형태학적 워터쉐드 알고리즘에 의한 영상분할은 크게 형태학적 연산자에 의한 영상의 단순화, 경사 영상 생성, 워터쉐드 알고리즘 수행 그리고 영역 병합 등의 여러 단계에 걸쳐 이루어진다. 그러나 기존의 형태학적 워터쉐드 알고리즘에 의한 영상분할은 과분할이 많이 일어나는 단점을 갖고 있다. 본 논문에서는 과분할을 줄이기 위해 잡음에 강한 형태학적 연산자에 의한 경사영상을 생성하고 워터쉐드 알고리즘을 적용 후 통계적인 콜모고로프-스미르노프 검정을 사용하여 인접한 영역 간의 픽셀 값 분포를 비교함으로써 부적절한 영역 병합을 최소화하였다. 본 논문에서 제안한 영상분할의 성능을 평가하기 위해 기존의 방법과 정성적이고 정량적인 비교뿐 만아니라 영상분할에 소요되는 계산시간까지 비교하였다.
In this paper, we propose a new scheme for automatic segmentation of the liver in CT images. The proposed scheme is carried out on region of interest(ROI) blocks that include regions of the liver with high probabilities. The ROI approach saves unnecessary computational loss in finding the accurate boundary of the liver. The proposed method utilizes the composition of multi-size morphological filters with a prior knowledge, such as the general location or the approximate intensity of the liver to detect the initial boundary of the liver. Then, we make the gradient image with the weight of the initial liver boundary and segment the liver legion by using an immersion-based waters hed algorithm in the gradient image. finally, the refining process is carried out to acquire a more accurate liver region.
한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
/
pp.95-98
/
2001
Edge detection is an important problem in computer vision and image understanding. Because the threshold is difficult to properly determine, edge images gained by the usually gradient-based segmentation methods are often tend to have many disjoint or overlapping boundaries, which makes the edge images spinous. In this paper, a practical multilevel morphological filter is presented for smoothing spinous edge images. The experimental results show that the method is effective in dealing with the images of a target in the sky.
International Journal of Computer Science & Network Security
/
제22권7호
/
pp.220-228
/
2022
Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.
확산(Diffusion)을 이용한 기존의 칼라영상 분할은 확산의 횟수가 반복될수록 경계선 정보가 적절히 유지되지 못하거나 잡음을 제거하지 못함으로써 워터쉐드(Watershed) 알고리즘을 적용하는 경우, 과분할을 피할 수 없다는 단점을 갖고 있다. 본 논문에서는 수리 형태학(Mathematical Morphology)과 비선형 확산(Non-Linear Diffusion)을 함께 적용하여 과분할의 문제점을 제거한 워터쉐드 결과를 얻을 수 있는 칼라영상 분할방법을 제안한다. 임의의 칼라 영상을 LUV 색상공간으로 변환하여, 그 각각의 색상공간에 수리 형태학을 응용한 재구성에 의한 닫힘(Reconstruction) 연산과 비선형 확산을 함께 적용하여 경계선을 적절히 유지하면서 잡음을 제거한 단순 영상을 획득할 수 있다. 이 영상에서 칼라 영상의 기울기(Gradient) 정보를 획득하고, 워터쉐드 알고리즘을 적용하여 영상을 분할한다. 실험 결과, 기존의 방법보다 과분할이 현저히 제거되고, 칼라 영상이 매우 효과적으로 분할됨을 확인하였다
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권10호
/
pp.5112-5129
/
2019
Image enhancement is a challenging problem in the field of image processing, especially low-light color images enhancement. This paper proposed a robust and comprehensive enhancement method based several points. First, the idea of bright channel is introduced to estimate the illumination map which is used to attain the enhancing result with Retinex model, and the color constancy is keep as well. Second, in order eliminate the illumination offsets wrongly estimated, morphological closing operation is used to modify the initial estimating illumination. Furthermore, in order to avoid fabricating edges, enlarged noises and over-smoothed visual features appearing in enhancing result, a multi-scale closing operation is used. At last, in order to avoiding the haloes and artifacts presented in enhancing result caused by gradient information lost in previous step, guided filtering is introduced to deal with previous result with guided image is initial bright channel. The proposed method can get good illumination map, and attain very effective enhancing results, including dark area is enhanced with more visual features, color natural and constancy, avoiding artifacts and over-enhanced, and eliminating Incorrect light offsets.
에지는 영상의 가장 기본적인 특징을 나타내며, 에지 검출은 영상처리 분야 및 컴퓨터 비전 영역에서 매우 중요한 역할을 한다. 이러한 에지를 검출하기 위한 연구들이 국내 외적으로 많이 수행되고 있다. 기존의 에지 검출 방법에는 로버츠, 소벨, 프리윗, 라플라시안 등 고정된 값의 마스크를 사용하는 방법들이 있으며 모폴로지 처리 기술 가운데 팽창과 침식을 이용하는 모폴로지 그라디언트 방법 등이 있다. 그러나 이러한 방법들은 대각선 방향이나 완만한 영상의 변화가 있는 경우 에지 검출이 잘 되지 않는 문제가 있다 따라서 본 논문에서는 이러한 경우에도 에지 검출이 잘 되는 변형된 top-hat 및 bottom-hat 변환 방식의 에지 검출 알고리듬을 제안하였다. 제안된 알고리듬을 기존의 방법들과 비교하여 에지 검출 영상을 제시하였으며 코사인 기반의 유사도를 사용하여 성능 및 유사성을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.