• 제목/요약/키워드: morphing aircraft

검색결과 14건 처리시간 0.019초

Variable camber morphing wing mechanism using deployable scissor structure: Design, analysis and manufacturing

  • Choi, Yeeryung;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • 제9권2호
    • /
    • pp.103-117
    • /
    • 2022
  • In this paper, a novel morphing mechanism using a deployable scissor structure was proposed for a variable camber morphing wing. The mechanism was designed through the optimization process so that the rib can form the target airfoils with different cambers. Lastly, the morphing wing was manufactured and its performance was successfully evaluated. The mechanism of the morphing wing rib was realized by a set of deployable scissor structure that can form diverse curvatures. This characteristic of the structure allows the mechanism to vary the camber that refers to the airfoil's curvature. The mechanism is not restrictive in defining the target shapes, allowing various airfoils and overall morphing wing shape to be implemented.

가변스팬 모핑날개를 가진 비행체의 공력특성 및 비행 제어 (Aerodynamics and Flight Control of Air Vehicle with Variable Span Morphing Wing)

  • 배재성;황재혁;박상혁;김종혁
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.1-8
    • /
    • 2010
  • In the aerospace field, the study on a morphing-wing is in progress to improve flight performance and perform multi flight mission. There are many concepts of morphing-wing such as camber-change, wing-twist, variable-span, and so on. In this study, the aerodynamic characteristics and flight control of an air vehicle with a variable-span morphing wing (VSMW) have been investigated. VSMW with symmetric span control(SSC) can increase cruising range of aircraft by reducing drag in various flight condition. VSMW with anti-symmetric span control(ASSC) can be used in the roll control of an aircraft. The flight control about pure rolling dynamic system and full dynamic system have been performed about the cruise missile.

Validation of a smart structural concept for wing-flap camber morphing

  • Pecora, Rosario;Amoroso, Francesco;Amendola, Gianluca;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.659-678
    • /
    • 2014
  • The study is aimed at investigating the feasibility of a high TRL solution for a wing flap segment characterized by morphable camber airfoil and properly tailored to be implemented on a real-scale regional transportation aircraft. On the base of specific aerodynamic requirements in terms of target airfoil shapes and related external loads, the structural layout of the device was preliminarily defined. Advanced FE analyses were then carried out in order to properly size the load-carrying structure and the embedded actuation system. A full scale limited span prototype was finally manufactured and tested to: ${\bullet}$ demonstrate the morphing capability of the conceived structural layout; ${\bullet}$ demonstrate the capability of the morphing structure to withstand static loads representative of the limit aerodynamic pressures expected in service; ${\bullet}$ characterize the dynamic behavior of the morphing structure through the identification of the most significant normal modes. Obtained results showed high correlation levels with respect to numerical expectations thus proving the compliance of the device with the design requirements as well as the goodness of modeling approaches implemented during the design phase.

압전섬유작동기를 이용한 형상적응날개 (Morphing wing using Macro Fiber Composite actuator)

  • 나영호;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2005
  • Recently, research on the morphing wing is an interesting issue to develop the capability of the wing such as improving the lift and reduction of drag during the operation of an aircraft by changing the wing shape from one configuration to another. A more efficient weight reduction of the wing using smart or morphing wing concept can be achieved in comparison with the conventional flaps. In this study, it is investigated the behaviors of the morphing wing using Macro Fiber Composite (MFC) actuators. Generally, MFC is the piezocomposite actuator with the rectangular PZT fiber and epoxy matrix, and uses the interdigitated electrode to produce more powerful actuation in the in-plane direction. Furthermore, it can produce the twisting actuation as compared with the traditional PZT actuators. In the formulation, the first-order shear deformation plate theory is used, and finite element method is adopted in the numerical analysis of the model. Results show the characteristics of the static behavior of the morphing wing according to the change of the actuation voltage.

  • PDF

모핑 에어포일 형상의 공력특성 실험연구 (Experimental Study on Aerodynamic Characteristics of Morphing Airfoil Configuration)

  • 고승희;배재성;김학봉;노진호;안석민
    • 한국항공우주학회지
    • /
    • 제40권10호
    • /
    • pp.846-852
    • /
    • 2012
  • 본 연구는 모핑 항공기 날개를 설계/제작하기 위한 선행 연구로서 기본날개단면 및 모핑날개단면에 대한 공력특성을 실험적으로 조사하였다. 이를 위해 Clark-Y형 에어포일을 가진 기본날개, 기계식 플랩을 가진 날개, 모핑플랩을 가진 날개를 제작하여 풍동실험을 수행하였다. 3축 로드셀을 이용하여 날개에 작용하는 양력, 항력 및 피칭모멘트를 측정하였으며, 풍동실험데이터는 Solid Blockage 와 Wake Blockage를 고려하여 보정하였다. 풍동 실험은 각 날개별로 다양한 속도, 레이놀즈, 받음각에 대해 수행되었다. 실험결과는 모핑 에어포일의 양력-항력 및 양력 피칭모멘트 특성이 기계식 플랩을 가지는 에어포일에 비해 우수한 것을 보여준다.

Active and Morphing Aerospace Structures-A Synthesis between Advanced Materials, Structures and Mechanisms

  • Baier, Horst;Datashvili, Leri
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.225-240
    • /
    • 2011
  • Active and shape morphing aerospace structures are discussed with a focus on activities aimed at practical implementation. In active structures applications range from dynamic load alleviation in aircraft and spacecraft up to static and dynamic shape control. In contrast, shape morphing means strong shape variation according to different mission status and needs, aiming to enhance functionality and performance over wide flight and mission regimes. The interaction of required flexible materials with the morphing structure and the actuating mechanisms is specifically addressed together with approaches in design and simulation.

Flutter Characteristics of a Morphing Flight Vehicle with Varying Inboard and Outboard Folding Angles

  • Shrestha, Pratik;Jeong, Min-Soo;Lee, In;Bae, Jae-Sung;Koo, Kyo-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.133-139
    • /
    • 2013
  • Morphing aircraft capable of varying their wing form can operate efficiently at various flight conditions. However, radical morphing of the aircraft leads to increased structural complexities, resulting in occurrence of dynamic instabilities such as flutter, which can lead to catastrophic events. Therefore, it is of utmost importance to investigate and understand the changes in flutter characteristics of morphing wings, to ensure uncompromised safety and maximum reliability. In this paper, a study on the flutter characteristics of the folding wing type morphing concept is conducted, to examine the effect of changes in folding angles on the flutter speed and flutter frequency. The subsonic aerodynamic theory Doublet Lattice Method (DLM) and p-k method are used, to perform the flutter analysis in MSC.NASTRAN. The present baseline flutter characteristics correspond well with the results from previous study. Furthermore, enhancement of the flutter characteristics of an aluminum folding wing is proposed, by varying the outboard wing folding angle independently of the inboard wing folding angle. It is clearly found that the flutter characteristics are strongly influenced by changes in the inboard/outboard folding angles, and significant improvement in the flutter characteristics of a folding wing can be achieved, by varying its outboard wing folding angle.

Morphing Wing Mechanism Using an SMA Wire Actuator

  • Kang, Woo-Ram;Kim, Eun-Ho;Jeong, Min-Soo;Lee, In;Ahn, Seok-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2012
  • In general, a conventional flap on an aircraft wing can reduce the aerodynamic efficiency due to geometric discontinuity. On the other hand, the aerodynamic performance can be improved by using a shape-morphing wing instead of a separate flap. In this research, a new flap morphing mechanism that can change the wing shape smoothly was devised to prevent aerodynamic losses. Moreover, a prototype wing was fabricated to demonstrate the morphing mechanism. A shape memory alloy (SMA) wire actuator was used for the morphing wing. The specific current range was measured to control the SMA actuator. The deflection angles at the trailing edge were also measured while various currents were applied to the SMA actuator. The trailing edge of the wing changed smoothly when the current was applied. Moreover, the deflection angle also increased as the current increased. The maximum frequency level was around 0.1 Hz. The aerodynamic performance of the deformed airfoil by the SMA wire was analyzed by using the commercial program GAMBIT and FLUENT. The results were compared with the results of an undeformed wing. It was demonstrated that the morphing mechanism changes the wing shape smoothly without the extension of the wing skin.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

Design of a morphing actuated aileron with chiral composite internal structure

  • Airoldi, Alessandro;Quaranta, Giuseppe;Beltramin, Alvise;Sala, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • 제1권3호
    • /
    • pp.331-351
    • /
    • 2014
  • The paper presents the development of numerical models referred to a morphing actuated aileron. The structural solution adopted consists of an internal part made of a composite chiral honeycomb that bears a flexible skin with an adequate combination of flexural stiffness and in-plane compliance. The identification of such structural frame makes possible an investigation of different actuation concepts based on diffused and discrete actuators installed in the skin or in the skin-core connection. An efficient approach is presented for the development of aeroelastic condensed models of the aileron, which are used in sensitivity studies and optimization processes. The aerodynamic performances and the energy required to actuate the morphing surface are evaluated and the definition of a general energetic performance index makes also possible a comparison with a rigid aileron. The results show that the morphing system can exploit the fluid-structure interaction in order to reduce the actuation energy and to attain considerable variations in the lift coefficient of the airfoil.