• Title/Summary/Keyword: moraine

Search Result 5, Processing Time 0.018 seconds

Glacier Change in the Yigong Zangbo Basin, Tibetan Plateau, China

  • Ke, Chang-Qing;Lee, Hoonyol;Han, Yan-Fei
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.491-502
    • /
    • 2019
  • Distinguishing debris-covered glaciers from debris-free glaciers is difficult when using only optical remote sensing images to extract glacier boundaries.According to the features that the surface temperature of debris-covered glacier is lower than surrounding objects, and higher than clean glaciers, glacial changes in the Yigong Zangbo basin was analyzed on the basis of visible, near-infrared and thermal-infrared band images of Landsat TM and OLI/TIRS in the support of ancillary digital elevation model (DEM). The results indicated that glacier area gradually declined from $928.76km^2$ in 1990 to $918.46km^2$ in 2000 and $901.51km^2$ in 2015. However, debris-covered glacier area showed a slight increase from $63.39km^2$ in 1990 to $66.24km^2$ in 2000 and $71.16km^2$ in 2015. During 25 years, the glacier length became shorter continuously with terminus elevation rising up. The area of moraine lakes in 1990 was $1.43km^2$, which increased to $1.98km^2$ in 2000 and $3.41km^2$ in 2015. In other words, the total area of the moraine lakes in 2015 is 2.38 times of that in 1990. This increase in moraine lake area could be the result of accelerated glacier melt and retreat, which is consistent with the significant warming trend in recent decades in the basin.

Soil organic carbon characteristics relating to geomorphology near Vestre Lovénbreen moraine in Svalbard

  • Jung, Ji Young;Lee, Kyoo;Lim, Hyoun Soo;Kim, Hyun-Cheol;Lee, Eun Ju;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • Soil organic carbon (SOC) in the Arctic is vulnerable to climate change. However, research on SOC stored in the high Arctic regions is currently very limited. Thus, this study was aimed at understanding the distribution and characteristics of SOC with respect to geomorphology and vegetation in Svalbard. In August 2011, soil samples were collected near the Vestre Lov$\acute{e}$nbreen moraine. Sampling sites were chosen according to altitude (High, Mid, and Low) and differences in levels of vegetation establishment. Vegetation coverage, aboveground biomass, and SOC contents were measured, and density-size fractionation of SOC was conducted. The SOC content was the highest in the Mid site ($126.9mg\;g^{-1}$) and the lowest in the High site ($32.1mg\;g^{-1}$), although aboveground biomass and vegetation coverage were not different between these two sites. The low SOC content measured at the High site could be related to a slower soil development following glacial retreat. On the other hand, the Low site contained a high amount of SOC despite having low vegetative cover and a high ratio of sand particles. These incompatible relationships between SOC and vegetation in the Low site might be associated with past site disturbances such as runoff from snow/glacier melting. This study showed that geomorphological features combined with glacier retreat or melting snow/glacier effects could have affected the SOC distribution and vegetation establishment in the high Arctic.

High-Resolution (3.5kHz) Echo Characters of the Northern South Shetland Continental Margin and the South Scotia Sea, Antarctica (남극 남쉐틀랜드 북부 대륙주변부 및 남스코시아해 지역의 고해상(3.5 kHz)음향 특성)

  • Lee, Sang-Hoon;Jin, Young-Keun;Kim, Kyu-Jung;Nam, Sang-Heon;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.557-567
    • /
    • 2003
  • High-resolution (3.5 kHz) subbottom profiles were analyzed in order to reveal sedimentation pattern of late Quaternary in the northern South Shetland continental margin and the South Scotia Sea, Antarctica. On the basis of clarity, continuity and geometry of surface and subbottom echoes together with seafloor topography, high-resolution echo characters are classified into eight echo types which represent rock basements (echo type III-1), coarse-grained subglacial till or moraine (echo type I-1), slides/slumps (echo type IV), debris-flow deposits (echo types II-3 and III-2), and bottom-current deposits (echo types I-2, II-1 and II-2). Subglacial till or moraine (echo type I-1) is mostly present in the lower continental shelf and upper continental slope of the northern South Shetland continental margin, which changes downslope to slides/slumps (echo type IV) and debris-flow deposits (echo types II-3 and III-2) in the middle to lower continental slope. This distribution suggests that the continental slopes of the northern South Shetland continental margin were mostly affected by downslope gravitational processes. Further downslope, bottom-current sediments (echo type I-2) deposited by the southwestward flowing Antarctic Deep Water (ADW) occur at the South Shetland Trench, reflecting an Interaction between mass flows and bottom currents in the area. In contrast to the northern South Shetland continental margin, the South Scotia Sea is dominated by bottom-current deposits (echo types II-1 and II-2), indicating that the sedimentation was mostly controlled by the westward flowing ADW. Flow intensity of the ADW has increased in the relative topographic highs, forming thin covers of coarse-grained contourites (echo type II-1), whereas it has decreased in the relative topographic lows, depositing thick, fine-grained contourites (echo type II-2). The poor development of wave geometry in the fine-grained bottom-current deposits (echo type II-2) is suggestive of the unsteady nature of the ADW flow.

InSAR-based Glacier Velocity Mapping in the Parlung Zangbo River Basin, Tibetan Plateau, China

  • Ke, Chang-Qing;Lee, Hoonyol;Li, Lan-Yu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • By applying the method of SAR interferometry to X-band synthetic aperture radar (SAR) image of COSMO-SkyMed, detailed motion patterns of five glaciers in the Parlung Zangbo River basin, Tibetan Plateau, in January 2010 have been derived. The results indicate that flow patterns are generally constrained by the valley geometry and terrain complexity. The maximum of $123.9ma^{-1}$ is observed on glacier No.1 and the minimum of $39.4ma^{-1}$ is found on glacier No.3. The mean values of five glaciers are between 22.9 and $98.2ma^{-1}$. Glaciers No.1, No.2, No.4 and No.5 exhibit high velocities in their upper sections with big slope and low velocities in the lower sections. A moraine lake accelerates the speed of mass exchange leading to a fast flow at the terminal of glacier No.3. These glaciers generally move along the direction of decreased elevation and present a macroscopic illustration of the motion from the northwest to the southeast. The accuracy of DEM and registration conditions of DEM-simulated terrain phases has certain effects on calculations of glacier flow direction and velocity. The error field is relatively fragmented in areas inconsistent with the main flow line of the glaciers, and the shape and uniformity of glacier are directly related to the continuous distribution of flow velocity errors.

A Preliminary Geomorphic Overview of Late Quaternary Glacier Fluctuations in the South Shetland Islands, West Antarctica (서남극 남쉐틀랜드 군도의 제4기 후기 빙하 활동의 지형학적 고찰)

  • Lim, Hyoun-Soo;Yoon, Ho-Il;Lee, Yong-Il;Kim, Yea-Dong;Owen Lewis A.;Seong, Yeong-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.513-526
    • /
    • 2006
  • The timing and extent of glaciations during the Late Quaternary in the South Shetland Islands, West Antarctica were defined using field mapping, geomorphic analysis and radiocarbon dating. Landforms of glacial erosion and deposition, in particular subglacial meltwater channel erosion, suggest that at least three glaciations occurred during the late Quaternary within the study region. During the global LGM, glacial troughs (such as Maxwell Bay and Admiralty Bay) were overdeepened by an ice stream moving south from $an\sim1000m-thick$ ice cap centered on the present-day continental shelf to the north. This ice was responsible for the subglacial meltwater channel erosion, and glacial polished and striated bedrock on the Fildes Peninsula. The recent local glaciations occurred about 2,000 years ago and during Little Ice Age (LIA). During these glaciations, glaciers were less extensive than the previous one and less erosive as a cold-based ice